A Backtracking strategy for Order-Independent
Incremental Learning

Nicola Di Mauro and Floriana Esposito and Stefano Ferilli and Teresa M. A. Basile !

Abstract. Agents that exist in an environment that changes over
time, and are able to take into account the temporal nature of ex-
perience, are commonly called incremental learners. It is widely
known that incremental learning systems suffer from order effects,
a phenomenon observed when differently ordered sequences of ex-
amples lead to different results. The goal of this paper is presenting
INTHELEX4qck, an order-independent evolution of the incremen-
tal learning system INTHELEX. A backtracking strategy is incor-
porated in its refinement operators, which causes a change in its re-
finement strategy and reflects the human behavior during the learn-
ing process. It consists in remembering the different versions of the
learned theory across modifications due to new evidence. In this way
the system can backtrack on a previous knowledge level when it dis-
covers to have made a wrong choice. Experiments on an artificial
dataset validate the approach in terms of computational cost and pre-
dictive accuracy.

1 INTRODUCTION

Intelligent agents should be able to work in environments that change
over time. Hence, their learning component should take into account
that the knowledge about the world is provided incrementally. For in-
stance, a learning system should revise its learned knowledge as new
observations are available, and it should be able to use this knowl-
edge to carry out some task at any stage of learning. This type of
learning is often named Incremental Learning.

The most important assumptions characterizing an incremental
learning system are the following: a) the system must be able to use
the learned knowledge at any step of the learning process; b) the-
ory revision must be efficient in fitting new incoming observations;
¢) memory requirements must not depend on the training size. Let
us recall from [5] some important definitions regarding incremental
learning and order effects.

Definition 1 (Incremental Learning). A learner is incremental if it
inputs one training experience at time, does not re-process any previ-
ous experience, and retains only one knowledge structure in memory.

This definition for incremental learning systems reflects the above
three assumptions about incrementality. In particular, it is important
to underline that the time taken to elaborate each observation must
be almost constant in order to guarantee efficient learning and to ex-
clude learning systems that retain competing descriptions, such as the
candidate elimination algorithm [6]. It is possible to see this kind of
systems as incremental hill climbing approaches to learning, affected
by the training instances ordering.

I Dipartimento di Informatica, Universita degli Studi di Bari, Italy
email:{nicodimauro, esposito, ferilli, basile } @di.uniba.it

Definition 2 (Order Effect). A learner L exhibits an order effect on
a training set of experiences 71 if there exist two or more orders of T’
for which L produces different knowledge structures.

The cause of this phenomenon can be discovered looking at the
learning process as a search in the space of knowledge structures. In
this perspective, an incremental learner chooses which path to follow
from a set of possibilities (generated by new incoming instances and
constrained by the previous ones) but there is no warranty that future
instances will agree with this choice.

Definition 3 (Order Sensitivity). A learner L is order sensitive if
there exists a training set 7" on which L exhibits an order effect.

Since robustness is a primary issue for any machine learning sys-
tem, it is very desirable to mitigate the phenomenon of order sensi-
tivity. This paper proposes a new general approach, based on a back-
tracking strategy, to decrease order sensitivity in incremental learning
systems. It is important to note that what is demanded to a learner is
not an exact definition of the target concept but, rather, the identifi-
cation of a good approximation of the concept itself that makes the
learner able to behave efficiently on future incoming instances. The
goal of this new approach is to maintain the incremental nature of the
learner, as stated in Definition 1, and to offer a strategy that alleviates
the order sensitivity while preserving the efficiency of the learning.

As Langley pointed out in [5], there exist at least three different
levels at which order effects can occur: at the level of attributes of the
instances, at the level of instances, and at the level of concepts. The
last two are more interesting for a deep analysis of the order effect
phenomenon. In this paper we focus on the second level, where the
task is to learn a concept definition from instances. In particular, we
investigate the approach in the Inductive Logic Programming (ILP)
framework, in which the concept definition is made up of clauses and
the instances are a set of positive and negative examples describing
the target concept. The problem of order effects at the level of con-
cepts requires a further analysis and represents a future work issue.

In the following, Section 2 reports some related works about how
to mitigate the order effect problem in incremental learning and Sec-
tion 3 introduces the new backtracking strategy. Section 4 briefly re-
calls INTHELEX and describes how the backtracking strategy has
been included. Finally, Section 5 reports experimental results, and
Section 6 concludes with some perspective for further research.

2 RELATED WORKS

It is widely known in the Machine Learning literature that incre-
mental learning suffers from instance order effects and that, under
some orderings, extremely poor theories might be obtained. How-
ever, when the purpose of a machine learning system is to work in

a robust manner, it is very desirable for it to be not order sensitive.
Thus, a lot of approaches in order to decrease/overcome the order
effect phenomenon in an incremental learner have been proposed.

The simplest way proposed to alleviate the problem is to retain all
possible alternatives for a revision point, or more than one descrip-
tion in memory. Unfortunately, this method results very expensive
from the computational complexity point of view, in both time and
space. An alternative is to make strong assumptions about the nature
of the target concept. The disadvantage of this method concerns the
validity of such assumptions, indeed checking these representational
restrictions could be computationally heavy. A more interesting ap-
proach consists in imposing constraints on the learning process by
means of a background knowledge. A formal analysis of the con-
ditions under which background knowledge reduces order effects is
reported in [1], where the author identifies the causes of the order ef-
fect in the system incapacity to focus on an optimal hypothesis (when
it has to choose among the current potential ones) and to keep enough
information not to forget potential hypotheses. These characteristics
correspond to a local preference bias that heuristically selects the
most promising hypotheses. Such a bias can be viewed as a prior
knowledge built into the system and can be obtained by means of ad-
ditional instances provided to an order-independent system. Hence,
the author reduces the problem of the right instances ordering to the
problem of adding such instances (representing the prior knowledge)
to an order-independent system. In this way it is proved that there are
strong contingencies for an incremental learner to be order indepen-
dent on some collection of instances.

Other specific strategies have been proposed to overcome the order
effect problem in incremental clustering.

The NOT-YET strategy [9] exploited in COBWEB [4] tries to
overcome the problem by means of a buffering strategy. The in-
stances that cannot be added to the current cluster are stored into
a buffer for future processing. The size of the buffer (i.e., the number
of instances that can be “remembered”) is a user-defined parameter.
During the learning process, when the size of the buffer exceeds the
user defined-size, the strategy elaborates the buffered instances up to
this moment in order to include them in the existing clusters. Exper-
imental results reported in [9] show that, in such an approach, there
can be cases in which to induce a good cluster an high number of
instances must be “bufferized” in order to be reconsidered later, and
in some cases this number may amount to even 90% of the dataset.

Another approach is represented by IDSR [10], an incremental
version of the ID3 batch algorithm, that builds a decision tree incre-
mentally. The tree is revised as needed, achieving a tree equivalent to
the one that the basic ID3 algorithm would construct, given the same
set of training instances. In ID5R the information needed to revise
the tree is maintained at each test node. This information consists of
the counts of positive and negative instances for every possible value
of every attribute coming from the training instances. The tree is re-
vised changing the position of some (or all) test nodes according to
a measure calculated on all the information (positive and negative
instances) regarding such a node. Hence, the algorithm does not for-
get any information contained in the input data and, when it makes a
choice between alternative hypotheses, it keeps enough information
to be able to compose all potential competing models and, thus, to
select the best one at any moment.

Unfortunately, both the above approaches do not respect at all the
definition of incremental learning.

3 THE BACKTRACKING STRATEGY

The goal of a machine learning system is to simulate the human
learning process, hence it is necessary to understand how to replicate,
in an automatic way, some human behaviors. We think that there is a
strict relation between incremental learning and the human learning
process, since human learners receive information in an incremental
fashion. We want to explain our approach to mitigate order effects
in incremental learning by making a parallel with the identification
of the right path in a maze. In a maze, arriving to a choice point, a
decision about what direction to follow has to be taken. If a dead end
is reached then it is necessary to go back to the last decision point
and choose another direction. This process is repeated until the way
out is found. In other words, the system must be provided with the
ability to hypothesize the existence of another path, better than the
current one, that leads to the correct solution.

From the machine learning point of view, when a learner is not
able to revise the theory, due to specific constraints it must fulfill, it
should assume that probably it had previously chosen a wrong path.
In particular, an incremental learning system explores the hypothe-
ses space with an hill-climbing approach, and this kind of myopia can
be avoided providing the learner with a mechanism for backtracking
over previous hypotheses. It is necessary to define some criteria, or
constraints, indicating when the system must backtrack, such as com-
pleteness, consistency, and theory minimality.Thus, when the learner
achieves a point in which it is not able to revise the current theory
with respect to a new incoming instance, assuring the completeness
and consistency criteria, then it could try to revise a previous one.

Furthermore, in order to backtrack on a previous theory, the sys-
tem must remember at what moments it revised the theory and how it
was revised. In particular, during the learning process, if at time ¢ the
system revised the theory 7" in T”, then it should memorize that “7"
was obtained from T at time t”. In order to perform this task, the
learner memorizes a list of revisions, where each element R; indi-
cates that at the time ¢ there was a revision of the theory due to incor-
rectness with respect to an example e;. Furthermore, each element in
this list contains the previous theory, the instance that fired the revi-
sion, and the new revised theory. Note that not the whole theories are
memorized in each element, but only the specific modification made
to the theory. In an ILP setting, this means that not all the clauses
composing the theory are memorized but just the revised clause(s). It
is important to note that this does not mean rembering/memorizing
all the possible refinements for a revision point, but only that at the
specific time ¢ the theory T was revised in T” in order to fit the ex-
ample e;. This list represents a chronological trace of the knowledge
changes and it is a powerful information for a theory revision system,
as shown in the following.

Let us now show how the learner should reason. As already
pointed out, the backtracking process is activated at time ¢ if some
constraints are violated. The learner hypothesizes that “the current
theory was obtained by choosing a wrong path” . In order to check if
this hypothesis is correct the learner restores a previous theory (say
the one at time ¢t — k), by using the list of revisions, and performs
another revision. At this point the alternatives are: 1) re-processing
all the instances arrived from time ¢ — k + 1 up to the time ¢; or
2) choosing a revision that does not violate the constraints on the
instances arrived from time ¢ — k 4 1 up to time ¢. Since the first
alternative violates the assumption of incremental learning, the sys-
tem tries to find a revision that fits all the examples seen up to the
moment of the backtracking step.

At least three different situations can arise dealing with incremen-

tal concept learning in ILP. The first corresponds to the case in which
the concept to be learnt is represented by a definition made up of only
one clause. The second situation concerns the concepts with more
than one clause in their definition. Finally, the third case corresponds
to multi-conceptual learning. In this paper we give a general strategy
for order effect in incremental learning, with a possible implementa-
tion dealing with the first situation above reported, and we provide
an analysis of the problems that arise in the second situation.

When the system has to learn a target concept whose definition is
made up of only one clause, some assumptions can be made about its
behavior. Specifically, when the current theory (clause) is incomplete
(resp. inconsistent) with respect to a new incoming positive (resp.
negative) example, and it is not possible to revise it, then we are sure
that it is always possible to backtrack and find a new theory (clause)
complete and consistent with respect to all known examples.

When the target concept is defined by two or more clauses
the problem of order effects becomes more difficult to handle.
Suppose that the concept C to be learnt is made up of the
clauses C1,C5,...,Cy, and that we have a set of examples
{6117 ey €lmy, €21, . .- yenly ey enmn} such that C;
explains all e;x’s (1 < ¢ < n,1 < k < m;), and C; does not
explain any e;n (j # 4,1 < h < mj). Obviously, if the learner
takes as input the examples in this ordering then it should be able to
learn the concept C expressed exactly as the disjunction of the clauses
C1,C4, ..., Cy. Suppose that we have another random ordering of
the examples, and that at time ¢ the system learned a theory made up
of only one clause C’. Furthermore, suppose that at time ¢ + 1 the
system takes as input a new positive example e not covered by the
theory and it is not able to generalize the clause C" to fit e. Hence, it
is necessary to add to the theory a new clause covering the example e
to make the theory complete. The problem in this situation is that the
clause C’ is a generalization of a set of examples that are not all, in
principle, in charge of the same clause C';. For instance, suppose that
the example e belongs to the concept “black” and that the clause C’
generalizes 3 examples for the concept “black” and 2 examples for
the concept “white”. The system is not able to generalize the clause
C" with respect to the example e because C” is forced to cover also
some examples for the concept “white”.

A possible solution is to go back on a previous revision point by
choosing another clause (revision) and to re-consider (i.e., use to re-
vise it, if needed) all the examples acquired after this revision point.
Another solution could be to define a similarity measure to extract
from the set of examples covered by the clause C’ a subset E of ex-
amples closer to the example e and generalize them into a new clause.
In this way the clause C" is no longer forced to cover the examples of
the set F, and a future generalization of C’ could be possible. But all
these solutions contrast with the main idea that a learning system is
not required to learn exactly the correct definition. Indeed, the goal is
to achieve a good approximation of the target concept evaluated, for
instance, by the completeness and consistency errors on new unseen
examples. Let us now analyze whether the backtracking strategy is a
good solution to mitigate the order effects at least on the base cases
and then extend it to more complicated problems.

y€2mo,y - -

4 IMPLEMENTATION IN INTHELEX

INTHELEX (INcremental THeory Learner from EXamples) is a
fully incremental, multi-conceptual learning system for the induc-
tion of hierarchical theories from examples [2]. In particular, full in-
crementality avoids the need of a previous theory to be available,
so that learning can start from an empty theory and from the first

example; multi-conceptual means that it can learn simultaneosly var-
ious concepts, possibly related to each other. Moreover, it is a closed
loop system, hence the learned theory is checked to be valid on any
new example available, and in case of failure a revision process is
activated upon it, in order to restore the completeness and consis-
tency properties. INTHELEX learns theories, expressed as sets of
Datalog®? clauses, from positive and negative examples. Datalog®?!
is a logic language based on the notion of Object Identity (“Within a
clause, terms denoted with different symbols must be distinct”) that
has the same expressive power as Datalog [8].

In a logical framework for the inductive synthesis of Datalog
theories, a fundamental problem is the definition of ideal refine-
ment operators. Unfortunately, when full Horn clause logic is cho-
sen as a representation language and either -subsumption or im-
plication is adopted as a generalization model, there exist no ideal
refinement operators [7]. On the contrary, they do exist under the
weaker, but more mechanizable and manageable ordering induced by
0o r-subsumption, as proved in [3]. Note that, like §-subsumption,
0o r-subsumption induces a quasi-ordering upon the space of Dat-
alog clauses, but this space is not a lattice when ordered by 6o -
subsumption, while it is when ordered by #-subsumption.

INTHELEX adopts a full memory storage strategy, i.e. it memo-
rizes all the examples, thus the learned theories are guaranteed to be
valid on the whole set of known examples. Besides it incorporates
two inductive refinement operators, one for generalizing hypotheses
that reject positive examples, and the other for specializing hypothe-
ses that explain negative examples. When a new incoming positive
example is not covered, a generalization of the theory is needed. The
system chooses a clause defining the wrong concept to be general-
ized and tries to compute the least general generalization under ob-
ject identity (Iggor) of this clause and the example. If one of the
computed generalizations is consistent with all the past negative ex-
amples, then it replaces the chosen clause in the theory, or else an-
other clause (if any) is chosen to compute the [ggor. If no clause
can be generalized, the system checks if the example itself, with the
constants properly turned into variables, is consistent with the past
negative examples. If so, the clause is added to the theory, or else the
example itself is added as an exception. When a negative example is
covered, a specialization of the theory must be performed. Among
the program clauses occurring in the SLD-derivation of the exam-
ple, INTHELEX tries to specialize one at the lowest possible level,
in order to refine the concepts that are used in the definitions of other
concepts, by adding to it one or more positive literals, which can
discriminate all the past positive examples from the current negative
one. In case of failure, it tries to add the negation of a literal, which
discriminates the negative example from all the past positive ones, to
the first clause of the SLD-derivation (related to the concept of which
the example is an istance). If none of the clauses obtained makes the
theory consistent, then INTHELEX adds the negative example to the
theory as an exception.

INTHELEX, like other incremental machine learning systems, is
order-sensitive. As already pointed out, the hypothesis space ordered
by the 6o r-subsumption relation is not a lattice as for 6-subsumption,
and hence, for any two clauses many mutually uncomparable mini-
mal refinements might exist. When the system tries to generalize a
clause, if it has more than one path to choose it cannot decide in
advance which is the correct one, because it does not know future
examples. As to specialization, INTHELEX uses a non-minimal op-
erator that appends additional premises to the clause. Also in this
case, if the system has many ways to specialize the clause it cannot
choose the correct one.

INTHELEX 4 ¢k, the improvement of INTHELEX that reduces the
order effects, embeds a backtracking strategy into the two inductive
refinement operators. The constraint that INTHELEX ¢ imposes
during learning is to have a minimal theory, and the violation of
this constraint starts the backtracking revision process. In particu-
lar, when the generalization operator fails in finding a lggor of a
clause, it tries to revise a previous theory. If this second step fails,
the system continues in the usual way by adding a new clause to the
theory. On the other hand, the specialization operator tries to revise a
previous theory only if it is not able to specialize (by adding positive
or negative literals) the clause that covers the negative example.

In order to restore a previous version of the theory to be revised,
INTHELEX .1 memorizes all the revisions, their type and at what
time they happened. Given a set of concepts Ci,C2,...Cy, to be
learnt, INTHELEX,, ., maintains a stack of revisions for each clause
of each concept C;. In particular, when the system performs a the-
ory revision, this revision is “pushed” in the corresponding stack
of the revised clause. In this way, the system is able to perform
backtracking on previous versions of a single clause. The follow-
ing is the detailed description of a generic element in the stack:
[Type, OldClause, NewClause, Examplel D], where Type can
be: 1) “adding a new clause”, 2) “lgg of a clause”, 3) “adding a
positive exception”, 4) “specialization with positive literal(s)”, 5)
“specialization with negative literal”, or 6) “adding negative ex-
ception”; OldClause is the clause revised while NewClause is
the new clause obtained by generalization or specialization; finally,
FExamplel D represents the number of the example that caused the
revision (i.e., the time at which the revision happened).

For a new incoming example, if the system decides to backtrack
on a previous theory, then it chooses a clause C' belonging to the
concept to be revised and finds the corresponding revisions’ stack
Sc. While there are items in Sc, the system “pops” a revision
R = [Tr,OCRr, NCr, EIDRg] from Sc and restores the previous
theory by just replacing the clause NC'r with OCr in the theory.
According to the type of the revision R the system performs one of
the following tasks: 1) if the type T'r of the revision R was a lgg
then it tries to find another 1gg of the clause OCr that is consistent
with all negative examples older than the example E D g, and con-
sistent and complete with all examples newer than £ I Dg; 2) if the
type Tr was a specialization by adding literals then it tries to find
another specialization of the clause OCr that is complete with re-
spect to all positive examples older than the example FIDgr, and
consistent and complete with all examples newer than EIDpg; 3) if
the type T'r is the addition of an exception then the system does not
perform any task and “pops” another revision; 4) when the type Tr
is the addition of a new clause this means that it is not possible to
revise a previous version of this clause, and hence the backtracking
revision process on this clause fails. When a backtracking process
fails on a clause, and there are no other clauses for that concept to
be revised, then INTHELEX 4.1 is forced to violate the constraint
of theory minimality by adding a new clause or an exception.

INTHELEX 4 fulfills Definition 1 since it does not reprocess
past examples, but just stores them for ensuring correcteness. Fur-
thermore, remembering how the theory was obtained does not mean
having a set of competing hypotheses that summarize the examples,
but only giving the system consciounsness of what it did.

S EXPERIMENTAL EVALUATION

The relevance of the new proposed strategy was evaluated by
comparing the learning behaviour of INTHELEXjc, with that of

INTHELEX. Experiments are based on a purposely designed artifi-
cial dataset. The main reason for excluding other benchmark (or real-
world) datasets is that the goal of experiments was to show the effec-
tiveness of the proposed strategy in avoiding ordering-effect, rather
than in verifying the goodness of the learning system itself. The re-
sults, in terms of accuracy of the theory, obtained by INTHELEX 4.
depend on the performance of INTHELEX, and hence we may ex-
pect that the improvements obtained on artificial datasets, could be
confirmed on real-world problems too. Furthermore, we needed a
dataset regarding a concept whose definition was made of only one
clause, since there is not still a well defined approach to solve the
case of a concept expressed by many clauses. It is easy to prove (not
done in this paper for lack of space) that, even on real-world datasets
with the same carachteristic, when the concept to be learnt is defined
by only one clause INTHELEX,, always find it.

5.1 The problem domain

In order to investigate the ability of INTHELEX}qcr in learning
the correct target concept without being order sensitive, the fol-
lowing clause C' made up of 4 variables and 5 predicate symbols
was defined, representing the target concept to be learnt: h(A) —
p1(A,B,C),p2(AE,C),p3(A,B,D),ps(A,D, E),ps(A, B,C).
Note that the first variable in the literals (A) is for linkedness pur-
poses only, since the theories learned by INTHELEX are made up of
linked clauses, thus all predicates can be considered as binary.

Then 100 positive and 100 negative examples were generated at
random. Specifically, each example contains 5 literals for each pred-
icate symbol p1, p2, p3, pa, Ps, whose arguments are selected, uni-
formly and without replacement, from the Cartesian product of all
possible pairs of 4 constants. In this way the same literal cannot oc-
cur twice. An example is considered positive if it is covered by the
above clause C, and negative otherwise.

5.2 Experimental settings

INTHELEX 4. Was evalueted along the same line as INTHELEX,
i.e. complexity (how many clauses the theory contains) and correcte-
ness (whether the theory contains the correct target clause) of the
learned theory, and the cost (time complexity and number of theory
revisions) spent to learn it.

In order to verify the order sensitivity of INTHELEX and the im-
provements of the new approach, independent orderings of the exam-
ples were generated from the training set. In this paper, we focused
on the order sensibility of the generalization operator only. In such
a way, the incremental nature of the system is preserved and only
one type of search is analyzed. Hence, the training set was built by
putting all the 100 negative examples at the beginning, followed by
all the positive ones. In this way, starting from an empty theory, the
system will learn and revise the theory starting from the first posi-
tive example, using the negative ones as a further search bias (i.e.,
a constraint on the way a system explores the clauses in the search
space).

5.3 Experimental results

In the first experiment INTHELEX was run on 34 different orderings
of the training set. Table 1 reports the results. The first row reports
all cases, the second row indicates the cases in which INTHELEX
learnt a theory containing the target clause, while the third row rep-
resents the cases in which it was not able to learn a correct theory.

The fact that the learned theory contains the correct clause but also
other clauses means that the correct clause was learnt at the end of
learning process. In this case it is possible to use a cleaning process
to eliminate all the clauses subsumed by the correct one. The first
column indicates the runtime expressed in milliseconds, the second
column the number of clauses composing the theory, and the third
column the number of 1ggor performed, all averaged on the number
of orderings (reported in the last column). INTHELEX is able to find
the correct solution in 21 cases out of 34. The high values in the third
row indicate the difficulty of the system to learn with a bad ordering
of examples.

Table 1. INTHELEX performances
Time Clauses Lgg Run
All 230895 13.94 34 34
Correct 89970 8.71 21.14 21
Wrong 461733.8 2238 5577 13

Table 2 reports the improvement of INTHELEX . on the same
set of orderings. Results reveal that it always learns the correct clause
in 41 seconds on average. The fourth column indicates that during
the learning process the system made 7.65 mistakes (corresponding
to the number of needed backtrackings). The number of “pops” for
each backtracking requested by the system is 1.22(= 9.34/7.65)
and the number of revisions (i.e., number of “push”) is 12.46.

Table 2. INTHELEXy, i performances

Time Clauses Lgg Backtracking Push Pop
41569.2 1 11.46 7.65 1246 9.34

When run on 100 orderings rather than on 34, INTHELEXpqcx
learned always the correct target concept after 13.85 positive exam-
ples on average (with minimum of 6 and a maximum of 82).

To have an idea of the behaviour of INTHELEX . in using both
generalization and specialization operators, the same training set was
used and 34 different orderings were built by mixing positive and
negative examples. In this case, the time complexity of INTHELEX
was better (211913.5) and the number of clauses composing the the-
ory was almost the same (13.68); the theory was obtained by means
of 37.53 generalizations, 21.2 specializations and by adding 12.5
negative exceptions. However, in this case INTHELEX found the
correct solution in only 14 cases out of 34; this indicates that putting
all the negative examples at the beginning is a profitable bias. The
behaviour of INTHELEX, is interesting. It always finds the cor-
rect solution, spending almost the same time (42586.5), by means
of fewer generalizations (6.8), backtracking (only 3.47), push (8.18)
and pop (6), and by using 0.38 positive specializations. Furthermore
executing INTHELEX 4, on 100 orderings rather than on 34 we
found that it converges rapidly to the correct solution: after 17.1 ex-
amples on average (with minimum of 12 and a maximum of 26).

It could be interesting to analyze the minumum amount of ex-
amples required by the system to correctly learn the theory. Hence,
the above training sets were corrupted by dropping a progressively
higher percentage of negative and positive examples, starting from
10% up to 95%. Table 3 reports the results, showing that the time
complexity decreases according to the number of examples while the
number of the other operations requested by the system are the same
until dropping from the dataset 80% of examples. Only above that

percentage the figures neatly changed, i.e. when the training set was
reduced to only 20 (10 positive and 10 negative) and 10 (5 positive
and 5 negative) examples. Note that the system was able to grasp the
correct concept until more than half of the examples were removed
from the training set.

Table 3. INTHELEXj,, . results
Problem Time Lgg Mist. Push Pop Correct
90 44940 11.19 7.63 12.19 9.38 100%
80 42474 10.82 737 11.82 8.94 100%
70 44411 10.85 727 11.85 9.12 100%
60 32039 11.24 7.59 1224 9.30 100%
50 29967 11.69 8.00 12.69 9.99 100%

40 36334 13.90 994 1490 1245 98%
30 26575 11.55 7.56 12.55 9.83 98%
20 22436 10.95 6.85 11.95 9.13 78%
10 8305 7.69 3.93 8.69 5.25 25%
5 470 3.74 0.80 4.74 0.89 0%

6 CONCLUSION AND FUTURE WORKS

This paper’ presented a backtracking strategy for mitigating or-
der effects in incremental learning, that was implemented in
INTHELEXqck, a modification of INTHELEX. Preliminary results
show that the strategy reaches good performance when compared to
an order-sensitive learner. Future work will concern a more accurate
evaluation of the strategy using also the specialization operator of
INTHELEX, only mentioned in this paper. Furthermore, an investi-
gation is ongoing on how to manage the case of learning a concept
whose definition is made up of more than one clause, and the most
complicated case of multiple concept learning task.

REFERENCES

[1] A. Cornuéjols, ‘Getting order independence in incremental learning’,
in ECML93, ed., P. Brazdil, volume 667 of Lecture Notes in Artificial
Intelligence, pp. 196-212. Springer Verlag, (1993).

[2] F. Esposito, S. Ferilli, N. Fanizzi, T.M.A. Basile, and N. Di Mauro,
‘Incremental multistrategy learning for document processing’, Applied
Artificial Intelligence Journal, 17(8/9), 859-883, (2003).

[3] F. Esposito, A. Laterza, D. Malerba, and G. Semeraro, ‘Locally finite,
proper and complete operators for refining datalog programs’, in IS-
MIS96, ed., Z.W. Ras M. Michalewicz, volume 1079 of Lecture Notes
in Artificial Intelligence, pp. 468—-478. Springer Verlag, (1996).

[4] D. H. Fisher, ‘Knowledge acquisition via incremental conceptual clus-
tering’, Machine Learning, 2, 139-172, (1987).

[5] P. Langley, ‘Order effects in incremental learning’, in Learning in hu-
mans and machines: Towards an Interdisciplinary Learning Science,
eds., P. Reimann and H. Spada, Oxford: Elsevier, (1995).

[6] T. Mitchell, ‘Generalization as search’, in Artificial Intelligence, vol-
ume 18, 203-226, (1982).

[7]1 S.-H. Nienhuys-Cheng and R. de Wolf, Foundations of Inductive Logic
Programming, volume 1228 of Lecture Notes in Artificial Intelligence,
Springer Verlag, February 1997.

[8] G. Semeraro, F. Esposito, D. Malerba, N. Fanizzi, and S.Ferilli, ‘A logic
framework for the incremental inductive syntesis of datalog theories’,
in LOPSTRYS, ed., N.E. Fuchs, volume 1463, pp. 300-321. Springer
Verlag, (1998).

[9] Luis Talavera and Josep Roure, ‘A buffering strategy to avoid ordering
effects in clustering’, in ECML9S, pp. 316-321, (1998).

[10] P. E. Utgoff, ‘Incremental induction of decision trees’, Machine Learn-
ing, 4, 161-186, (1989).

2 This work was partially funded by the EU sixth framework programme
VIKEF (Virtual Information and Knowledge Environment Framework).

