
An Exhaustive Matching Procedure for the
Improvement of Learning Efficiency

Nicola Di Mauro, Teresa Maria Altomare Basile, Stefano Ferilli,
Floriana Esposito, and Nicola Fanizzi

Dipartimento di Informatica, Università di Bari
via E. Orabona, 4 - 70125 Bari - Italia

{nicodimauro,asile,ferilli,esposito,fanizzi}@di.uniba.it

Abstract. Efficiency of the first-order logic proof procedure is a ma-
jor issue when deduction systems are to be used in real environments,
both on their own and as a component of larger systems (e.g., learning
systems). Hence, the need of techniques that can speed up such a pro-
cess. This paper proposes a new algorithm for matching first-order logic
descriptions under θ-subsumption that is able to return the set of all
substitutions by which such a relation holds between two clauses, and
shows experimental results in support of its performance.

1 Introduction

The induction of logic theories intensively relies on the use of a covering proce-
dure that essentially computes whether a candidate concept definition (a hypoth-
esis) explains a given example. This is the reason why the covering procedure
should be carefully designed for an efficient hypothesis evaluation, which in turn
means that the underlying matching procedure according to which two descrip-
tions are compared must a fortiori fulfill the very same requirement. When
the underlying generalization model is θ-subsumption, which is common for the
standard ILP setting [11,12], the complexity of the evaluation is known to be
NP-hard [4], unless biases are applied to make the problem tractable.

If ILP algorithms have to be applied to real-world problems the efficiency
of the matching procedure is imperative, especially when it has to return (some
of) these substitutions in case of success (e.g., when they are to be used for
performing a resolution step). A prototypical case is represented by the domain
of document understanding, in which the learning task concerns the induction of
rules for the detection of the roles and relationships between the numerous logic
parts that make up a structured document layout. By testing the performance
of ILP algorithms in this domain, it can be proven that in this and in similar
tasks, where many objects and relations are involved, the ILP systems easily
show their poor efficiency since the computational time grows exponentially, as
expected for the worst case. Indeed, when profiling the execution of our learning
system INTHELEX [3] on instances of that task, it was clear that the embedded
matching procedure was to blame as the main source of inefficiency.

T. Horváth and A. Yamamoto (Eds.): ILP 2003, LNAI 2835, pp. 112–129, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

An Exhaustive Matching Procedure 113

Specifically, the matching procedure embedded in INTHELEX simply ex-
ploited the Prolog built-in SLD resolution: indeed, the θ-subsumption test can
be cast as a refutation of the hypothesis plus the example description added
with the negation of the target classification. The proof is computed through
various SLD resolution steps [9], which can be very inefficient in some cases. For
instance, given the following two clauses:

h(X) :- p(X,X1),p(X,X2),..., p(X,Xn),q(Xn).
h(c) :- p(c,c1),p(c,c2),...,p(c,cm).

SLD-resolution will have to try all mn possible mappings (backtrackings) be-
fore realizing that the former does not match the latter because of the lack of
property q. Thus, the greater n and m, the sooner it will not be able to com-
pute subsumption between the two clauses within acceptable time1. It is clear
that, in real-world settings, situations like this are likely to happen, preventing
a solution to the problem at hand from being found. Needless to say, this would
affect the whole learning task. Indeed, the absence of just one matching solution
could stop a whole deduction, that in turn might be needed to reach the overall
solution and complete the experimental results on which drawing the researcher
conclusions.

The above consideration motivated the decision to find a more efficient algo-
rithm for matching, so to cope with difficult learning problems both in artificial
and in real domains. It should be highlighted that, for our system purposes,
the procedure must solve a search problem, that is more complex than a mere
θ-subsumption test, since it is mandatory that every possible substitution is com-
puted and returned. There are two unnegligible motivation for this. The former
is that the specializing operator relies on this information to find refinements
that are able to rule out a problematic negative example while still covering all
the past positive ones [2]. The latter is that the saturation and abstraction op-
erators embedded in INTHELEX require resolution to find all possible instances
of sub-concepts hidden in the given observations, in order to explicitly add them
to the example descriptions. Further reasons are related to the fact that a clause
covering an example in many ways could give a higher confidence in the correct
classification of the example itself. Besides, most ILP learning algorithms require
a more complex matching procedure that solves a search problem rather than
a simple decision problem. Indeed, while the mere covering would suffice for a
naive generate-and-test algorithm, in general, the induction of new candidate
hypotheses may require the calculation of one or all the substitutions that lead
a concept definition to explain an example. Finding all substitutions for match-
ing has been investigated in other fields, such as production systems, theorem
proving, and concurrent/parallel implementations of declarative languages. For
instance, in functional programming search procedures can be often formalized
as functions yielding lists as values. As Wadler [17] points out, if we make the
result of a function a list, and regard the items of this list as multiple results,
lazy evaluation provides the counterpart of backtracking. In automated theorem

1 In some complex cases of document understanding the Prolog SLD resolutions re-
quired by a single refutation have been observed to last for over 20 days!

114 Nicola Di Mauro et al.

proving, tableaux calculi have been introduced such as the Confluent Connection
Calculus where backtracking is avoided.

We looked at the available literature on the subject, and found out that
a recent system available was Django, kindly provided to us by its Authors,
but unfortunately it did not fit our requirements of returning the matching
solutions. As to the previous algorithms, they were not suitable as well, since
they return just one solution at a time, thus requiring backtracking for collecting
all solutions. But blind backtracking is just the source of the above inefficiency,
thus our determination has been to definitely avoid it, and having a matching
procedure that always goes forward without loosing information. No such thing
was available in the literature, and this forced us to build one ourselves.

This paper is organized as follows. The next section presents related work in
this field; then, Section 3 presents a new matching algorithm, while Section 4
shows experimental results concerning its performance. Lastly, Section 5 draws
some conclusions and outlines future work.

2 Related Work

The great importance of finding efficient algorithms for matching descriptions
under θ-subsumption is reflected by the amount of work carried out so far in this
direction in the literature. The latest results have been worked out by Maloberti
and Sebag in [10], where the problem of θ-subsumption is faced by means of a
Constraint Satisfaction Problem (CSP) approach.

Briefly, a CSP involves a set of variables X1, . . . , Xn, where each Xi has do-
main dom(Xi), and a set of constraints, specifying the simultaneously admissible
values of the variables. A CSP solution assigns to each Xi a value ai ∈ dom(Xi)
such that all constraints are satisfied. CSP algorithms exploit two kinds of heuris-
tics. Reduction heuristics aim at transforming a CSP into an equivalent CSP of
lesser complexity by pruning the candidate values for each variable (local consis-
tency). Search heuristics are concerned with the backtracking procedure (look-
back heuristics) and with the choice of the next variable and candidate value
to consider (look-ahead heuristics): a value is chosen for each variable and then
consistency is checked. Since there is no universally efficient heuristic in such a
setting, different combinations thereof may be suited to different situations.

θ-subsumption is mapped onto a CSP by transforming each literal involved
in the hypothesis into a CSP variable with proper constraints encoding the
θ-subsumption structure. Specifically, each CSP variable Xp corresponds to a
literal in clause C built on predicate symbol p, and dom(Xp) is taken as the
set of all literals in the clause D built on the same predicate symbol. A con-
straint r(Xp, Xq) is set on a variable pair (Xp, Xq) iff the corresponding literals
in C share a variable. Given such a representation, different versions of a cor-
rect and complete θ-subsumption algorithm, named Django, were built, each
implementing different (combinations of) CSP heuristics. Some exploited look-
ahead heuristics to obtain a failure as soon as possible. Others were based on
forward checking (propagation of forced assignments — i.e., variables with a sin-
gle candidate value) and arc-consistency (based on the association, to each pair

An Exhaustive Matching Procedure 115

variable-candidate value, of a signature encoding the literal links — i.e., shared
variables — with all other literals).

Experiments in hard artificial domains are reported, proving a difference
in performance of several orders of magnitude in favor of Django compared to
previous algorithms. In sum, all the work carried out before Django (namely,
by Gottlob and Leitsch [6], by Kiets and Lübbe [8] and by Scheffer, Herbrich
and Wysotzki [13]) aimed at separating the part of the clause for which finding
a matching is straightforward or computationally efficient, limiting as much as
possible the complexity of the procedure. All the corresponding techniques rely
on backtracking, and try to limit its effect by properly choosing the candidates in
each tentative step. Hence, all of them return only the first matching substitution
found, even if many exist. On the contrary, it is important to note that Django
only gives a binary (yes or no) answer to the subsumption test, without providing
any matching substitution in case of positive outcome.

3 A New Matching Algorithm

Ideas presented in related work aimed, in part, at leveraging on particular situa-
tions in which the θ-subsumption test can be computed with reduced complexity.
However, after treating efficiently the subparts of the given clauses for which it
is possible, the only way out is applying classical, complex algorithms, possibly
exploiting heuristics to choose the next literal to be unified. In those cases, the
CSP approach proves very efficient, but at the cost of not returning (all the)
possible substitutions by which the matching holds. Actually, there are cases in
which at least one such substitution is needed by the experimenter. Moreover,
if all such substitutions are needed (e.g., for performing successive resolution
steps), the feeling is that the CSP approach has to necessarily explore the whole
search space, thus loosing all the advantages on which it bases its efficiency. The
proposed algorithm, on the contrary, returns all possible matching substitutions,
without performing any backtracking in their computation. Such a feature is im-
portant, since the found substitutions can be made available to further matching
problems, thus allowing to perform resolution.

Before discussing the new procedure proposed in this paper, it is necessary
to preliminarily give some definitions on which the algorithm is based. In the fol-
lowing, we will assume that C and D are Horn clauses having the same predicate
in their head, and that the aim is checking whether a matching exists between
C and D, i.e. if C θ-subsumes D, in which case we are interested in all possible
ways (substitutions) by which it happens. Note that D can always be considered
ground (i.e., variable-free) without loss of generality. Indeed, in case it is not, a
new corresponding clause D′ can be obtained by replacing each of its variables
by a new constant not appearing in C nor in D, and it can be proven that C
θ-subsumes D iff C θ-subsumes D′.

Definition 1 (Matching Substitution). A matching substitution from a lit-
eral l1 to a literal l2 is a substitution µ, such that l1µ = l2.

116 Nicola Di Mauro et al.

The set of all matching substitutions from a literal l ∈ C to some literal in D is
denoted by [1]:

uni(C, l,D) = {µ | l ∈ C, lµ ∈ D}.
Let us start by defining a structure to compactly represent sets of substitutions.

Definition 2 (Multi-substitutions). A multibind is denoted by X → T ,
where X is a variable and T �= ∅ is a set of constants. A multi-substitution is a
set of multibinds Θ = {X1 → T1, . . . , Xn → Tn} �= ∅, where ∀i �= j : Xi �= Xj.

Informally, a multibind identifies a set of constants that can be associated to a
variable, while a multi-substitution represents in a compact way a set of possi-
ble substitutions for a tuple of variables. In particular, a single substitution is
represented by a multi-substitution in which each constants set is a singleton.

Example 1. Θ = {X → {1, 3, 4}, Y → {7}, Z → {2, 9}} is a multi-substitution.
It contains 3 multibinds, namely: X → {1, 3, 4}, Y → {7} and Z → {2, 9}.

Given a multi-substitution, the set of all substitutions it represents can be
obtained by choosing in all possible ways one constant for each variable among
those in the corresponding multibind.

Definition 3 (Split). Given a multi-substitution Θ = {X1 → T1, . . . , Xn →
Tn}, split(Θ) is the set of all substitutions represented by Θ:

split(Θ) = { {X1 → ci1 , . . . , Xn → cin} | ∀k = 1 . . . n : cik
∈ Tk ∧ i = 1 . . . |Tk|}.

Example 2. split({X → {1, 3, 4}, Y → {7}, Z → {2, 9}}) =
{{X → 1, Y → 7, Z → 2}, {X → 1, Y → 7, Z → 9}, {X → 3, Y → 7, Z → 2},
{X → 3, Y → 7, Z → 9}, {X → 4, Y → 7, Z → 2}, {X → 4, Y → 7, Z → 9}}.

Definition 4 (Union of Multi-substitutions). The union of two multi-sub-
stitutions Θ′ = {X → T ′, X1 → T1, . . . , Xn → Tn} and Θ′′ = {X → T ′′, X1 →
T1, . . . , Xn → Tn} is the multi-substitution defined as

Θ′
Θ′′ = {X → T ′ ∪ T ′′} ∪ {Xi → Ti}1≤i≤n

Informally, the union
 of two multi-substitutions that are identical but for
the multibind referred to one variable is a multi-substitution that inherits the
common multibinds and associates to the remaining variable the union of the
corresponding sets of constants in the input multi-substitutions. Note that the
two input multi-substitutions must be defined on the same set of variables and
must differ in at most one multibind.

Example 3. The union of two multi-substitutions
Σ = {X → {1, 3}, Y → {7}, Z → {2, 9}}
and Θ = {X → {1, 4}, Y → {7}, Z → {2, 9}},
is: Σ
Θ = {X → {1, 3, 4}, Y → {7}, Z → {2, 9}}
(the only different multibinds being those referring to variable X).

An Exhaustive Matching Procedure 117

Algorithm 1 merge(S)
Require: S : set of substitutions (each represented as a multi-substitution)

while ∃u, v ∈ S such that u �= v and u � v = t do
S := (S \ {u, v}) ∪ {t}

end while
return S

Definition 5 (Merge). Given a set S of substitutions on the same variables,
merge(S) is the set of multi-substitutions obtained according to Algorithm 1.

Example 4.
merge({{X → 1, Y → 2, Z → 3}, {X → 1, Y → 2, Z → 4}, (X → 1, Y → 2, Z →
5}})
= merge({{X → {1}, Y → {2}, Z → {3, 4}}, {X → {1}, Y → {2}, Z → {5}}})
= {{X → {1}, Y → {2}, Z → {3, 4, 5}}}.
This way we can represent 3 substitutions with only one multi-substitution.

The merge procedure is in charge of compressing many substitutions into a
smaller number of multi-substitutions. It should be noted that there are cases in
which a set of substitutions cannot be merged at all; moreover, the set of multi-
substitutions resulting from the merging phase could be not unique. In fact, it
may depend on the order in which the two multi-substitutions to be merged are
chosen at each step.

Example 5. Let us consider the following substitutions:
θ = {X ← 1, Y ← 2, Z ← 3} δ = {X ← 1, Y ← 2, Z ← 4}
σ = {X ← 1, Y ← 2, Z ← 5} τ = {X ← 1, Y ← 5, Z ← 3}
One possible merging sequence is (θ
 δ)
 σ, that prevents further merging τ
and yields the following set of multi-substitutions:
{{X ← {1}, Y ← {2}, Z ← {3, 4, 5}}, {X ← {1}, Y ← {5}, Z ← {3}}}
Another possibility is first merging θ
 τ and then δ
 σ, that cannot be further
merged and hence yield:
{{X ← {1}, Y ← {2, 5}, Z ← {3}}, {X ← {1}, Y ← {2}, Z ← {4, 5}}}

The presented algorithm does not currently specify any particular principle ac-
cording to which performing such a choice, but this issue is undoubtedly a very
interesting one, and deserves a specific study (that would require a paper on its
own) in order to understand if the quality of the result is actually affected by
the ordering and, in such a case, if there are heuristics that can suggest in what
order the multi-substitutions to be merged have to be taken in order to get an
optimal result. Actually, many of such heuristics, often clashing with each other,
can be developed according to the intended behavior of the system: for instance,
some heuristics can be used to make the system faster in recognizing negative
outcomes to the matching problem; others can be exploited to optimize the in-
termediate storage requirements when the matching exists. Preliminary tests on
this issue revealed that sorting the constants in the multibinds, in addition to

118 Nicola Di Mauro et al.

make easier the computation of their union and intersection, also generally leads
to better compression with respect to the random case. Nevertheless, further
insight could suggest better strategies that ensure the best compression (overall
or at least on average).

Definition 6 (Intersection of Multi-substitutions). The intersection of
two multi-substitutions Σ = {X1 → S1, . . . , Xn → Sn, Y1 → Sn+1, . . . , Ym →
Sn+m} and Θ = {X1 → T1, . . . , Xn → Tn, Z1 → Tn+1, . . . , Zl → Tn+l}, where
n,m, l ≥ 0 and ∀j, k : Yj �= Zk, is the multi-substitution defined as:

Σ �Θ = {Xi → Si ∩ Ti}i=1...n ∪ {Yj → Sn+j}j=1...m ∪ {Zk → Tn+k}k=1...l

iff ∀i = 1 . . . n : Si ∩ Ti �= ∅; otherwise it is undefined.

Informally, the intersection � of two multi-substitutions is a multi-substitu-
tion that inherits the multibinds concerning variables appearing in either of the
starting multi-substitutions, and associates to each variable occurring in both the
input multi-substitutions the intersection of the corresponding sets of constants
(that is required not to be empty) in the input multi-substitutions.

Example 6. The intersection of two multi-substitutions
Σ = {X → {1, 3, 4}, Z → {2, 8, 9}} and Θ = {Y → {7}, Z → {1, 2, 9}}
is: Σ �Θ = {X → {1, 3, 4}, Y → {7}, Z → {2, 9}}.
The intersection of Σ = {X → {1, 3, 4}, Z → {8, 9}} and Θ = {Y → {7}, Z →
{1, 2}} is undefined.

The above � operator is able to check if two multi-substitutions are compat-
ible (i.e., if they share at least one of the substitutions they represent). Indeed,
given two multi-substitutions Σ and Θ, if Σ � Θ is undefined, then there must
be at least one variable X , common to Σ and Θ, to which the corresponding
multibinds associate disjoint sets of constants, which means that it does not
exist a constant to be associated to X by both Σ and Θ, and hence a common
substitution cannot exist as well.

The � operator can be extended to the case of sets of multi-substitutions.
Specifically, given two sets of multi-subistitutions S and T , their intersection is
defined as the set of multi-substitutions obtained as follows:

S � T = {Σ �Θ | Σ ∈ S, Θ ∈ T }

Note that, whereas a multi-substitution (and hence an intersection of multi-sub-
stitutions) is or is not defined, but cannot be empty, a set of multi-substitutions
can be empty. Hence, an intersection of sets of multi-substitutions, in particu-
lar, can be empty (which happens when all of its composing intersections are
undefined).

Proposition 1. Let C={l1, . . . , ln} and ∀i = 1 . . . n : Ti=merge(uni(C, li, D));
let S1 = T1 and ∀i = 2 . . . n : Si = Si−1 � Ti. C θ-subsumes D iff Sn �= ∅.

An Exhaustive Matching Procedure 119

Algorithm 2 matching(C,D)
Require: C : c0 ← c1, c2, . . . , cn, D : d0 ← d1, d2, . . . , dm: clauses

if ∃θ0 substitution such that c0θ0 = d0 then
S0 := {θ0};
for i := 1 to n do

Si := Si−1 �merge(uni(C, ci, D))
end for

end if
return (Sn �= ∅)

Proof.

(⇐) Let us prove (by induction on i) the thesis in the following form:
∀i ∈ {1, . . . , n} : Si �= ∅ ⇒ {l1, . . . , li} ≤θ D (i.e., ∃θ s.t. {l1, . . . , li}θ ⊆ D).
[i = 1] ∅ �= S1 = T1 ⇒ ∀Θ ∈ T1, ∀θ ∈ split(Θ) : ∃k ∈ D s.t. l1θ = k ∈ D ⇒
{l1}θ = {k} ⊆ D ⇒ {l1} ≤θ D.

[(i− 1)⇒ i] Si = Si−1 � Ti �= ∅ ⇒def ∃Σ ∈ Si−1, Θ ∈ Ti s.t. Σ �Θ defined
⇒ ∃σ ∈ split(Σ), θ ∈ split(Θ) : σ, θ compatible ⇒ {l1, . . . , li−1}σ ⊆ D
(by hypothesis) ∧{li}θ ⊆ D (by definition of Ti) ⇒ {l1, . . . , li−1}σ ∪
{li}θ ⊆ D ⇒ {l1, . . . , li}σθ ⊆ D.

This holds, in particular, for i = n, which yields the thesis.
(⇒) First of all, note that ∀i = 1, . . . , n : Ti �= ∅. Indeed, (ad absurdum)
∃i ∈ {1, . . . , n} s.t. Ti = ∅ ⇒ ∃li ∈ C s.t. merge(uni(C, li, D)) = ∅ ⇒
uni(C, li, D) = ∅ ⇒� ∃θ, � ∃k ∈ D s.t. liθ = k ⇒ C �≤θ D (Absurd!).
Suppose (ad absurdum) that Sn = ∅. Then ∃i s.t. ∀i, j, 1 ≤ i < i ≤
j ≤ n : Si �= ∅ ∧ Sj = ∅. But then Si = Si−1 � Ti = ∅, which implies
that no substitution represented by Ti is compatible with any substitu-
tion represented by Si−1. Hence, while clause {l1, . . . , li−1} θ-subsumes D
(∀θ ∈ split(Σ), ∀Σ ∈ Si−1), the clause obtained by adding to it literal li
does not. Thus, C cannot θ-subsume D, which is an absurd since it happens
by hypothesis.

This leads to the θ-subsumption procedure reported in Algorithm 2. It is worth
explicitly noting that, if the number of substitutions by which clause C subsumes
clause D grows exponentially, and these items are such that no merging can
take place at all, it follows that exponential space will be required to keep them
all. In this case there is no representation gain (remember that we are anyway
forced to compute all solutions), but one could wonder how often this happens
in real world (i.e., in non purposely designed cases). Moreover, as a side-effect,
in this case the merge procedure will not enter the loop, thus saving considerable
amounts of time.

Example 7. Let us trace the algorithm on C = h : −p(X1, X2), r(X1, X2). and
D = h : −p(a, b), p(c, d), r(a, d). The two heads match by the empty substitu-
tion, thus S0 is made up of just the empty substitution.
i = 1: uni(C, p(X1, X2), D) = {{X1/a,X2/b}, {X1/c,X2/d}} that, rep-
resented as multi-substitutions, becomes: {{X1 → {a}, X2 → {b}}, {X1 →

120 Nicola Di Mauro et al.

Table 1. Merge statistics on random problems

Substitutions Multi-Substitutions Compression

Average 176,0149015 43,92929293 0,480653777
St-Dev 452,196913 95,11695761 0,254031445

Min 1 1 0,001600512
Max 3124 738 1

{c}, X2 → {d}}}. Now, since the union between these two substitutions is
not defined, the while loop is not entered and the merge procedure returns
the same set unchanged: merge(uni(C, p(X1, X2), D)) = {{X1 → {a}, X2 →
{b}}, {X1 → {c}, X2 → {d}}}. By intersecting such a set with S0, we obtain
S1 = {{X1→ {a}, X2→ {b}}, {X1→ {c}, X2→ {d}}}.
i = 2: uni(C, r(X1, X2), D) = {{X1/a,X2/d}} that, represented as multi-
substitutions, becomes: {{X1→ {a}, X2→ {d}}}. It is just one multi-substitu-
tion, thus merge has no effect again: merge(uni(C, r(X1, X2), D)) = {{X1 →
{a},
X2 → {d}}}. By trying to intersect such a set with S1, the algorithm fails
because its intersections are both undefined, since {b} ∩ {d} = ∅ for X2 in the
former, and {a}∩{c} = ∅ forX1 in the latter. Hence, C does not theta-subsumes
D, since S2 = ∅.

4 Experiments

Some preliminary artificial experiments were specifically designed to assess the
compression power of multi-substitutions. First of all, 10000 instances of the fol-
lowing problem were generated and run: fixed at random a number of variables
n ∈ {2, . . . , 9} and a number of constants m ∈ {2, . . . , 5}, among all the possible
mn corresponding substitutions l were chosen at random and merged. Table 1
reports various statistics about the outcome: in particular, the last column in-
dicates the compression factor, calculated as the number of multi-substitutions
over the number of substitutions. It is possible to note that, on average, the
multi-substitution structure was able to compress the 52% of the input substi-
tutions, with a maximum of 99, 84%. As expected, there were cases in which no
merging took place.

Two more experiments were designed, in order to better understand if (and
how) the compression depends on the number of variables and constants. The
reported results correspond to the average value reached by 33 repetitions of
each generated problem. First we fixed the number of variables to 2, letting the
number of constants m range from 2 to 10. For each problem (2,m) and for
each i ∈ {1, . . . ,m2}, i substitutions were randomly generated and merged. Fig-
ure 1 reports the average number of multi-substitutions and the corresponding
compression factor in these cases. Conversely, Figure 2 reports the average and
the compression factor for a similar artificial problem in which the number of
constants was set to 2, and the number of variables n was varied from 2 to 10.

An Exhaustive Matching Procedure 121

Fig. 1. Average number of multi-substitutions and compression factor for an
artificial problem with 2 variables and m ∈ {2, . . . , 10} constants

Fig. 2. Average number of multi-substitutions and compression factor for an
artificial problem with 2 constants and n ∈ {2, . . . , 10} variables

The x-axis of the plots corresponds to the number of substitutions generated,
the y-axis corresponds to the computed statistic. The curves in the two cases are
similar, suggesting a stable (i.e., depending only on the percentage of the whole
set of possible substitutions that is taken into account) compression behavior
of the merge. Of course, growing parameters (represented by successive curves
from left to right) lead to progressively higher values.

Then, a prototype of the proposed algorithm was implemented in Prolog, and
integrated with INTHELEX (an incremental system for first-order logic learning
from examples, refer to [3] for a more detailed description) in order to make it
able to handle the problematic situation occurred in the document dataset. Note
that, since INTHELEX relies on the Object Identity (OI) assumption [14], the
Prolog implementation slightly modifies the algorithm in order to embed such
a bias (the same effect is obtained in SLD-resolution by explicitly adding to
each clause the inequality literals expressing OI). To check if any performance
gain was obtained, INTHELEX was run on the document interpretation learning
problem first exploiting the classical SLD-resolution procedure provided by Pro-
log (with proper inequality literals encoding the OI assumption), and then using
the new algorithm (modified to embed OI). Note that our primary interest was

122 Nicola Di Mauro et al.

Fig. 3. Sample COLLATE documents: registration card from NFA (top-left),
censorship decision from DIF (top-right), censorship card from FAA (bottom-
left) and newspaper articles (bottom-right)

just obtaining acceptable and practically manageable runtimes for the learning
task, and not checking the compression performance of the multi-substitution
representation.

The original learning task concerned the EC project COLLATE (Collabo-
ratory for Annotation, Indexing and Retrieval of Digitized Historical Archive
Material), aimed at providing a support for archives, researchers and end-users
working with digitized historic/cultural material. The chosen sample domain
concerns a large corpus of multi-format documents concerning rare historic film
censorship from the 20’s and 30’s, but includes also newspaper articles, pho-
tos, stills, posters and film fragments, provided by three major European film
archives. Specifically, we considered 4 different kinds of documents: censorship
decisions from Deutsches Filminstitut (DIF, in Frankfurt), censorship cards from
Film Archive Austria (FAA, in Vienna), registration cards from Národni Filmový

An Exhaustive Matching Procedure 123

Archiv (NFA, in Prague) and newspaper articles (from all archives), for each of
which the aim was inducing rules for recognizing the role of significant layout
components such as film title, length, producer, etc. Figure 3 reports some sam-
ples of this material. Specifically, for carrying out the comparison, we focused on
one specific problem: learning the semantic label object title for the document
class dif censorship decision. Such a choice originates from the higher complex-
ity of that label in that kind of document with respect to the others, due to
its being placed in the middle of the page, thus having interrelations with more
layout blocks than the other components.

The resulting experimental dataset, obtained from 36 documents, contained
a total of 299 layout blocks, 36 of which were positive instances of the target
concept, while all the others were considered as negative examples. The average
length of the example descriptions ranges between 54 and 263 literals (215 on
average), containing information on the size, content type, absolute and relative
position of the blocks in a given document. The dataset was evaluated by means
of a 10-fold cross validation. It should be noted that the learned theory must be
checked for completeness and consistency for each new incoming example, and
also on the whole set of processed examples each time a candidate refinement is
computed, thus the matching procedure is very stressed during the learning and
test tasks.

The number of variables in the clauses that make up the theory to be taken
into account by the matching procedure, that is the critical factor for the ex-
ponential growth of the number of substitutions in the experiments, ranged
between 50 (for some non-refined clauses) and 4 (for some very refined ones).
The results of the comparison reveal a remarkable reduction of computational
times when using the proposed algorithm2. Indeed, the average computational
cost for learning in the 10 runs using SLD resolution (5297 sec) is much higher
than using the new matching procedure (1942 sec), with a difference of 3355 sec
on average. Going into more detail, 80% of the times are in favor of the matching
procedure, in which cases the difference grows up to 4318 sec, while the average
of times in favor of SLD resolution is limited to 225 sec only. It is noteworthy
that in one case SLD resolution took 31572 sec to reach one solution, against
2951 sec of the matching procedure to return all. Another interesting remark is
that the presented experiment was carried out by SLD resolution in reasonable,
though very high, times; as already pointed out, we also faced cases (not taken
into account here because we wanted to compute the average times) in which 20
days were still insufficient for it to get a solution.

The good results obtained under the OI assumption led us to try to make
a comparison in the general case with other state-of-the-art systems. Since, as
already pointed out, no algorithm is available in the literature to compute in one
step the whole set of substitutions, the choice was between not making a com-
parison at all, or comparing the new algorithm to Django (the best-performing
system in the literature so far for testing θ-subsumption, refer to [10] for a more

2 Note that the difference is completely due to the matching algorithms, since the rest
of the procedures in the learning system is the same.

124 Nicola Di Mauro et al.

detailed explanation). In the second case, it is clear that the challenge was not
completely fair for our algorithm, since it always computes the whole set of solu-
tions, whereas Django computes none (it just answers ‘yes’ or ‘no’). Nevertheless,
the second option was preferred, according to the principle that a comparison
with a faster system could in any case provide useful information on the new
algorithm performance, if its handicap is properly taken into account. The need
for downward-compatibility in the system output forced to translate the new al-
gorithm’s results in the more generic answers of Django, and hence to interpret
them just as ‘yes’ (independently of how many substitutions were computed,
which is very unfair for our algorithm) or ‘no’ (if no subsuming substitution ex-
ists). Hence, in evaluating the experimental results, one should take into account
such a difference, so that a slightly worse performance of the proposed algorithm
with respect to Django should be considered an acceptable tradeoff for getting
all the solutions whenever they are required by the experimental settings. Of
course, the targets of the two algorithms are different, and it is clear that in case
a binary answer is sufficient the latter should be used.

Specifically, a C language implementation of the new algorithm (this time
in the general case, not restricted with the OI bias)3 was made for carrying
out the comparison on the same two tasks exploited for evaluating Django by
its Authors. The former concerned Phase Transition [5], a particularly hard ar-
tificial problem purposely designed to study the complexity of matching First
Order Logic formulas in a given universe in order to find their models, if any.
Thus, this dataset alone should be sufficient to assess the algorithm performance.
Nevertheless, it seemed interesting to evaluate it on real-world problems, whose
complexity is expected not to reach the previous one. The Mutagenesis prob-
lem [16] is a good testbed to this purpose. No other experiment was run, because
no other dataset is available in the literature having a complexity that allows
to appreciate the two algorithms’ power and performances, thus justifying their
exploitation. All the experiments were run on a PC platform equipped with
an Intel Celeron 1.3 GHz processor and running the Linux operating system. In
both the two datasets referred to above, the general-case procedure (i.e., without
the OI bias) will be exploited. The number of variables in clause C, denoted by
n, is chosen according to the directions of the Authors that previously exploited
them, for the sake of comparison; however, it is worth noting that the number of
constants (which constitutes the base of the exponential formula) in the Phase
Transition dataset is quite high (up to 50), which contributes to significantly
raise the number of possible substitutions (5010 in some experiments).

In the Phase Transition setting, each clause φ is generated from n variables
(in a set X) and m binary predicates (in a set P), by first constructing its
skeleton ϕs = α1(x1, x2) ∧ . . . ∧ αn−1(xn−1, xn) (obtained by chaining the n
variables through (n − 1) predicates), and then adding to ϕs the remaining
(m− n+ 1) predicates, whose arguments are randomly, uniformly, and without
replacement selected from X. Given Λ, a set of L constants, an example, against

3 This implementation is publicly available on the Internet at the URL:
http://lacam.di.uniba.it:8000/systems/matching/.

http://lacam.di.uniba.it:8000/systems/matching/

An Exhaustive Matching Procedure 125

Fig. 4. Performance of the proposed algorithm (left-hand side) and of Django
(right-hand side) on the Phase Transition problem (logarithm of times expressed
in sec)

which checking the subsumption of the generated clause, is built using N literals
for each predicate symbol in P, whose arguments are selected uniformly and
without replacement from the universe U = Λ×Λ. In such a setting, a matching
problem is defined by a 4-tuple (n,m,L,N). Like in [10], n was set to 10, m
ranges in [10, 60] (actually, a wider range than in [10]) and L ranges in [10, 50].
To limit the total computational cost, N was set to 64 instead of 100: This does
not affect the presence of the phase transition phenomenon, but just causes the
number of possible substitutions to be less, and hence the height of the peaks
in the plot to be lower. For each pair (m,L), 33 pairs (hypothesis , example)
were constructed, and for each the computational cost was computed. Figure 4
reports the plots of the average θ-subsumption cost over all 33 trials for each
single matching problem, measured as the logarithm of the seconds required by
our algorithm and by Django on the phase transition dataset.

The two plots are similar in that both show their peaks in correspondence
of low values of L and/or m, but the slope is smoother for Django than for the
proposed algorithm, whose complexity peaks are more concentrated and abruptly
rising. Of course, there is an orders-of-magnitude difference between the two
performances (Django’s highest peak is 0.037 sec, whereas our algorithm’s top
peak is 155.548 sec), but one has to take into account that the proposed algorithm
also returns the whole set of substitutions by which θ-subsumption holds (if any,
which means that a ‘yes’ outcome may in fact hide a huge computational effort
when the solutions are very dense), and it almost always does this in reasonable
time (only 5.93% of computations took more than 1 sec, and only 1.29% took
more than 15 sec).

Such a consideration can be supported by an estimation of the expected
number of solutions (i.e., substitutions) for each matching problem considered
in the experiment.

According to the procedure for generating problem instances, the first literal
in the clause can match any literal in the example, the following (n − 2) ones
have one variable partially constrained by the previous ones, and the remaining

126 Nicola Di Mauro et al.

Fig. 5. Logarithm of the expected number of solutions

(m − n + 1) are completely fixed, because they contain only variables already
appeared in the first part of the formula. Then, the number of solutions for the
skeleton ϕs is proportional to:

N
N

L
. . .

N

L︸ ︷︷ ︸
n−1

=
Nn−1

Ln−2
= S

The remaining literals decrease this number to:

S
N

L2
. . .

N

L2︸ ︷︷ ︸
m−n+1

=
Nn−1

Ln−2

(
N

L2

)m−n+1

=
Nm

L2m−n
.

Such a result, obtained in an informal way, agrees with the theoretical one (Ex-
pected number of solutions of a CSP) according to [15]4.

It is interesting to note that the shape of the plot of the logarithm of such a
function, reported in Figure 5, resembles that of the proposed algorithm in Fig-
ure 4, in that both tend to have a peak for low values of L and m. This suggests,
as expected, a proportionality between the computational times of the proposed
algorithm and the number of substitutions to be computed. On the other hand,
there is no such correspondence of this plot with Django performance. Even
more, Django shows a tendency to increase computational times when keeping
L low and progressively increasing m, just where our algorithm seems, on the
contrary, to show a decrease (coherent with the number of expected solutions).

In the Mutagenesis dataset, artificial hypotheses were generated according
to the procedure reported in [10]. For given m and n, such a procedure returns
an hypothesis made up of m literals bond(Xi, Xj) and involving n variables,
where the variables Xi and Xj in each literal are randomly selected among n
variables {X1, . . . , Xn} in such a way that Xi �= Xj and the overall hypothesis
is linked [7]. The cases in which n > m + 1 were not considered, since it is not

4 Remember that the matching problem can be mapped onto a CSP.

An Exhaustive Matching Procedure 127

Fig. 6. Performance of the proposed algorithm (left-hand side) and of Django
(right-hand side) on the Mutagenesis problem (sec)

Table 2. Mean time on the Mutagenesis problem for the three algorithms (sec)

SLD Matching Django

158,2358 0,01880281 0,00049569

possible to build a clause with m binary literals that contains more than m+ 1
variables and that fulfills the imposed linkedness constraint. Specifically, for each
(m,n) pair (1 ≤ m ≤ 10, 2 ≤ n ≤ 10), 10 artificial hypotheses were generated
and each was checked against all 229 examples provided in the Mutagenesis
dataset. Then, the mean performance of each hypothesis on the 229 examples was
computed, and finally the computational cost for each (m,n) pair was obtained
as the average θ-subsumption cost over all the times of the corresponding 10
hypotheses. Figure 6 reports the performance obtained by our algorithm and
by Django on the θ-subsumption tests for the Mutagenesis dataset. Timings are
measured in seconds.

Also on the second experiment, the shape of Django’s performance plot is
smoother, while that of the proposed algorithm shows sharper peaks in a gen-
erally flat landscape. Again, the proposed algorithm, after an initial increase,
suggests a decrease in computational times for increasing values of n (when m
is high). It is noticeable that Django shows an increasingly worse performance
on the diagonal5, while there is no such phenomenon in the left plot of Figure 6.
In this case, however, there is no appreciable difference in computational times,
since both systems stay far below the 1 sec threshold, which is a suggestion
that real-world tasks normally do not present the difficult situations purposely
created for the phase transition dataset.

Table 2 reports the mean time needed by the three considered algorithms to
get the answer on the Mutagenesis Problem (backtracking was forced in SLD
in order to obtain all the solutions). The Matching algorithm turned out to be

5 Such a region corresponds to hypotheses with i literals and i + 1 variables. Such
hypotheses are particularly challenging for the θ-subsumption test since their literals
form a chain of variables (because of linkedness).

128 Nicola Di Mauro et al.

8415, 5 times more efficient than the SLD procedure (such a comparison makes
no sense for Django because it just answers ‘yes’ or ‘no’). To have an idea of the
effort spent, the mean number of substitutions was 91, 21 (obviously, averaged
only on positive tests, that are 8, 95% of all cases).

5 Conclusions and Future Work

This paper proposed a new algorithm for computing the whole set of solu-
tions to the matching problem under θ-subsumption, whose efficiency derives
from a proper representation of substitutions that allows to avoid backtracking
(which may cause, in particular situations, unacceptable growth of computa-
tional times in classical matching mechanisms). Experimental results show that
the new procedure significantly improves the performance of the learning system
INTHELEX with respect to simple SLD resolution.

Also on two different datasets, a real-world one and an artificial one pur-
posely designed to generate hard problems, it was able to carry out its task with
high efficiency. Actually, it is not directly comparable to other state-of-the-art
systems, since its characteristic of yielding all the possible substitution by which
θ-subsumption holds has no competitors. Nevertheless, a comparison seemed
useful to get an idea of the cost in time performance for getting such a plus.
The good news is that, even on hard problems, and notwithstanding its harder
computational effort, the new algorithm turned out to be in most cases compa-
rable, and in any case at least acceptable, with respect to the best-performing
system in the literature. A Prolog version of the algorithm is currently used in
INTHELEX, a system for inductive learning from examples.

Future work will concern an analysis of the complexity of the presented al-
gorithm, and the definition of heuristics that can further improve its efficiency
(e.g., by guiding the choice of the best literal to take into account at any step in
order to recognize as soon as possible the impossibility of finding a match).

Acknowledgements

This work was partially funded by the EU project IST-1999-20882 COLLATE
“Collaboratory for Annotation, Indexing and Retrieval of Digitized Historical
Archive Material” (URL: http://www.collate.de). The authors would like to
thank Michele Sebag and Jerome Maloberti for making available their system
Django, and for the kind suggestions on its use and features. A grateful acknowl-
edgement to the reviewers for their useful comments and suggestions on how to
improve and make clearer ideas presented in this paper.

http://www.collate.de

An Exhaustive Matching Procedure 129

References

1. N. Eisinger. Subsumption and connection graphs. In J. H. Siekmann, editor,
GWAI-81, German Workshop on Artificial Intelligence, Bad Honnef, January
1981, pages 188–198. Springer, Berlin, Heidelberg, 1981.

2. F. Esposito, N. Fanizzi, D. Malerba, and G. Semeraro. Downward refinement of
hierarchical datalog theories. In M.I. Sessa and M. Alpuente Frasnedo, editors, Pro-
ceedings of the Joint Conference on Declarative Programming - GULP-PRODE’95,
pages 148–159. Università degli Studi di Salerno, 1995.

3. F. Esposito, G. Semeraro, N. Fanizzi, and S. Ferilli. Multistrategy Theory Revision:
Induction and abduction in INTHELEX. Machine Learning Journal, 38(1/2):133–
156, 2000.

4. M.R. Garey and D.S. Johnson. Computers and Intractability. Freeman, San Fran-
cisco, 1979.

5. A. Giordana, M. Botta, and L. Saitta. An experimental study of phase transitions
in matching. In Dean Thomas, editor, Proceedings of the 16th International Joint
Conference on Artificial Intelligence (IJCAI-99-Vol2), pages 1198–1203, S.F., July
31–August 6 1999. Morgan Kaufmann Publishers.

6. G. Gottlob and A. Leitsch. On the efficiency of subsumption algorithms. Journal
of the Association for Computing Machinery, 32(2):280–295, 1985.

7. N. Helft. Inductive generalization: A logical framework. In I. Bratko and N. Lavrač,
editors, Progress in Machine Learning, pages 149–157, Wilmslow, UK, 1987. Sigma
Press.

8. J.-U. Kietz and M. Lübbe. An efficient subsumption algorithm for inductive logic
programming. In W. Cohen and H. Hirsh, editors, Proc. Eleventh International
Conference on Machine Learning (ML-94), pages 130–138, 1994.

9. J.W. Lloyd. Foundations of Logic Programming. Springer, Berlin, New York, 2nd
edition, 1987.

10. J. Maloberti and M. Sebag. θ-subsumption in a constraint satisfaction perspective.
In Céline Rouveirol and Michèle Sebag, editors, Inductive Logic Programming, 11th
International Conference, ILP 2001, Strasbourg, France, volume 2157, pages 164–
178. Springer, September 2001.

11. S.H. Muggleton and L. De Raedt. Inductive logic programming. Journal of Logic
Programming: Theory and Methods, 19:629–679, 1994.

12. S.-H. Nienhuys-Cheng and R. de Wolf. Foundations of Inductive Logic Program-
ming, volume 1228 of Lecture Notes in Artificial Intelligence. Springer, 1997.

13. T. Scheffer, R. Herbrich, and F. Wysotzki. Efficient θ-subsumption based on graph
algorithms. In Stephen Muggleton, editor, Proceedings of the 6th International
Workshop on Inductive Logic Programming (ILP-96), volume 1314 of LNAI, pages
212–228, Berlin, August 26–28 1997. Springer.

14. G. Semeraro, F. Esposito, D. Malerba, N. Fanizzi, and S. Ferilli. A logic framework
for the incremental inductive synthesis of datalog theories. In N. E. Fuchs, editor,
Logic Program Synthesis and Transformation, number 1463 in Lecture Notes in
Computer Science, pages 300–321. Springer-Verlag, 1998.

15. Barbara M. Smith and Martin E. Dyer. Locating the phase transition in binary
constraint satisfaction. Artificial Intelligence, 81(1–2):155–181, 1996.

16. Ashwin Srinivasan, Stephen Muggleton, Michael J.E. Sternberg, and Ross D. King.
Theories for mutagenicity: A study in first-order and feature-based induction. Ar-
tificial Intelligence, 85(1-2):277–299, 1996.

17. P. Wadler. How to replace failure by a list of successes. In J.-P. Jouannaud, editor,
Functional Programming Languages and Computer Architecture, volume 201 of
Lecture Notes in Computer Science, pages 113–128. Springer-Verlag, 1985.

	Introduction
	Related Work
	A New Matching Algorithm
	Experiments
	Conclusions and Future Work

