
International Journal of Systems Science
Vol. 37, No. 13, 20 October 2006, 905–918

Text learning for user profiling in e-commerce

M. DEGEMMIS*, P. LOPS, S. FERILLI, N. DI MAURO,
T. M. A. BASILE and G. SEMERARO

Dipartimento di Informatica, Università di Bari, Via E. Orabona, 4 – 70125 Bari, Italia

(Received 16 February 2006; in final form 7 April 2006)

Exploring digital collections to find information relevant to a user’s interests is a challenging

task. Algorithms designed to solve this relevant information problem base their relevance
computations on user profiles in which representations of the users’ interests are maintained.
This article presents a new method, based on the classic Rocchio algorithm for text categor-

ization, able to discover user preferences from the analysis of textual descriptions of items in
online catalog of e-commerce Web sites. Experiments have been carried out on several data
sets, and results have been compared with those obtained using an inductive logic program-
ming (ILP) approach and a probabilistic one.

Keywords: User modeling; Machine learning; Content-based filtering; Text categorization; Word Net

1. Introduction

E-commerce sites often recommend products they
believe a customer is interested in buying. Often
users are swamped with (product) information and
have difficulty in separating relevant from irrelevant
information. Many Web sites have started to embody
recommender systems as a way of personalizing
their content for users. Recommendation algorithms
use input about a customer’s interests to generate a
personalized list of recommended items. A possible
way to achieve personalization is to use static profiles
that must be manually updated by users when
their interests change. These limitations clearly call
for alternative methods that infer preference informa-
tion implicitly and support automated content recom-
mendation. Machine learning techniques are being
used to recognize regularities in the behavior of
customers and to infer a model of their interests,
referred to as a user profile.
This article presents a new method, based on the

classic Rocchio algorithm for text categorization
(Rocchio 1971), able to discover user preferences

from the analysis of textual descriptions of items in the

catalog of an e-commerce Web site. The novelty of the

method can be summarized as follows:

(a) Positive and negative examples are weighted

differently for each user, according to the rates

given during the training phase. The classic

Rocchio method uses specific control parameters

that allow setting the relative importance of all

positive and negative examples;

(b) The method is able to manage documents structured

in different slots, each corresponding to a specific

feature of an item, for example, title, authors, and

abstract. This strategy permits us to give a different

weight to words on the basis of the slot in which

they appear, according to the idea that words

appearing in the title may be more indicative of

user preferences than words appearing in the body

of the document.

In order to evaluate the effectiveness of the

proposed approach, a comparison with different

learning strategies has been carried out, namely an

ILP approach and a naı̈ve Bayes method. Our experi-

ments evaluated the effects of the aforementioned

methods in learning intelligible profiles of users’ inter-

ests. The experiments were conducted on two data*Corresponding author. Email: degemmis@di.uniba.it

International Journal of Systems Science
ISSN 0020–7721 print/ISSN 1464–5319 online � 2006 Taylor & Francis

http://www.tandf.co.uk/journals
DOI: 10.1080/00207720600891794



sets: the first one in the context of a content-based
profiling system for virtual bookshop on the World

Wide Web, the other concerning recommendation
services for movie sites. In these scenarios, a client
side utility has been developed in order to download
items (book or movie descriptions) for a user

from the Web and to capture users’ feedback regard-
ing his liking/disliking on the downloaded items.
Then, this knowledge can be exploited by the three
different learning techniques so that when a trained

system encounters a new item it can intelligently
infer whether this new item will be liked by the
user or not.
This article is organized as follows: section 2 describes

the main principles for learning user profiles from tex-

tual description. Section 3 describes in more details the
new Rocchio-based algorithm for inferring user profiles
and gives an overview of the systems used for compari-
son. Section 4 presents the detailed description of

the experiments. Finally, some conclusions are drawn
in section 5.

2. Learning user profiles from textual descriptions

Recent research on intelligent information access
and recommender systems has focused on the content-

based information recommendation paradigm that
exploits textual descriptions of the items to be recom-
mended and relevance ratings given by users to infer a
profile of user interests (Mladenic, 1999). Text cate-

gorization is commonly described as follows: given a
set of classes C¼ fc1, . . . , cng and a set of training
documents labeled with the class the document
belongs to, the problem is in building a classifier

able to assign to a new document the proper class.
We consider the problem of learning user profiles as
a binary classification task: each document has to be
classified as interesting or not with respect to the

user preferences. The set of classes is restricted to
cþ, the positive class (user likes), and c�, the negative
one (user dislikes). The application of text categoriza-
tion methods to the problem of learning user profiles

is not new: several experiments have shown that the
naı̈ve Bayesian classifier offers several advantages
over other learning algorithms (Mooney and Roy
2000; Pazzani and Billsus 1997). Thus, we compared

the proposed Rocchio-based algorithm with the naı̈ve
Bayesian classifier implemented in our Item
Recommender system. Moreover, our research aims
at comparing these techniques with a symbolic

approach able to induce profiles that are more read-
able from a human understandability viewpoint.

2.1 Documents representation

The representation that dominates the text classification
literature is known as bag of words (BOW). In this
approach, each feature corresponds to a single word
found in the training set. Usually a list of stop words
that are assumed to have no information content is
removed from the original text. In order to make the
features statistically independent, typically a stemming
algorithm is used to remove suffixes from words.
In our application scenarios, items to be recommended
are books or movies. Each item is represented by a set
of slots, where each slot is a textual field corresponding
to a specific feature of the item: title, author, and textual
annotation, that is the abstract of the book, for books;
title, cast, director, keywords, and summary for
movies. The text in each slot is represented using
the BOW model taking into account the occurrences
of words in the original text. Thus, each instance is
represented by a list of BOWs, one BOW for each slot.
This strategy considers separately the occurrences of a
word in the slots in which it appears. The idea behind
this approach is that counting the number of occur-
rences separately in each slot could supply a more
effective way to discover the informative power of a
word in a document describing the item. Stemming
and stop words removal have been applied to the
documents used in the experiments.

2.2 Related works

Content-based systems have been used successfully in
various domains including Web browsing, news filtering,
and recommendation services.

Letizia is a content-based Web agent that suggests
Web pages of interest to the user (Lieberman 1995).
The system, a Web browser extension that tracks the
user’s browsing behavior, relies on implicit feedback
and uses a set of heuristics to infer the user’s preferences.
For example, Letizia interprets bookmarking a page as
strong evidence for the user’s interests in the page.
NewsDude (Billsus and Pazzani 1999) reads interesting
news articles via a speech interface. The news source is
Yahoo! News, with an initial training set of interesting
news articles provided by the user. Length of listening
time provides implicit user feedback on articles read
out. A short-term user model is based on TFIDF (cosine
similarity), and long-term model based on a naı̈ve
Bayes classifier. Both Letizia and NewsDude use implicit
feedback, which does not require any active user invol-
vement, in the sense that ratings are guessed by monitor-
ing the user’s activities. In our approach, we decided to
adopt explicit feedback (the system requires the user to
explicitly evaluate documents). This technique has the
advantage of simplicity, both for system design and

906 M. Degemmis et al.



system implementation. Furthermore, in performing

experiments, explicit feedback has the added advantage

of minimizing one potential source of experimental

error, inference of the user’s true reaction. Our work

on learning user profiles as Bayesian classifiers is

mainly inspired by:

. Syskill & Webert (Pazzani and Billsus 1997) is a soft-
ware agent that learns a user’s interests saved as a user

profile, and uses this profile to identify interesting

Web pages. The learning process is conducted by

first converting HTML source into positive and

negative examples, and then using algorithms like

Bayesian classifiers, a nearest neighbor algorithm

and a decision tree learner.
. Mooney and Roy (2000) adopt a text categorization
method in their LIBRA system, which makes

content-based book recommendations exploiting the

product descriptions obtained from the Web pages

of the Amazon{ online digital store, using a naı̈ve

Bayes text classifier. Book descriptions are structured

into slots in order to maintain separately information

about title, authors, abstract. The advantages of

exploiting information about the structure of docu-

ments are pointed out also in the work by Ma et al.

(2003). In this work, the authors propose a method

which uses structuring conventions as a feature reduc-

tion method. Information extraction techniques are

used to extract a synopsis of document structure,

which contains only the most informative features.

The main result is that the accuracy of the classifiers

produced from the feature space is comparable to

those reported in previous document classification

efforts using much larger feature spaces. Based on

these results, we decided to modify the categorization

method by taking into account information about the

structure of the documents.

As regards the work mainly related to the Rocchio

algorithm for user profiling, ifWeb (Asnicar and Tasso

1997) is a system that supports users in document

searching. User profiles are stored in the form of a

weighted semantic network, that represents terms and

their context by linking nodes (words) with arcs rep-

resenting co-occurrences in some documents. ifWeb

support explicit feedback and takes into account not

only interest, but also explicit disinterest, and therefore

presumably represents a user’s idiosyncrasies more

accurately. In this aspect, this approach is similar to

our method based on the Rocchio relevance feedback

that learns both a positive and a negative profile.

SiteIF (Stefani and Strapparava 1998) is a personal

agent for a multilingual news Web site that learns the
user’s interests from the requested pages that are ana-
lyzed to generate or to update a model of the user.
Exploiting this model, the system tries to anticipate
which documents in the Web site could be interesting
for the user. SiteIF strongly resembles ifWeb (profiles
and documents are stored as semantic networks also in
this system), except that explicit user interaction is
avoided.

3. A relevance feedback method for

learning user profiles

The Rocchio algorithm is one of the most popular
learning methods from Information Retrieval and
document classification. In this algorithm, documents
are represented with the vector space representation
and the major heuristic component is the TFIDF
(term frequency/inverse document frequency) word
weighting scheme (Salton and McGill 1983), that reflects
empirical observations regarding text:

TFIDFðtk, djÞ ¼ TFðtk, djÞ|fflfflfflfflffl{zfflfflfflfflffl}
TF

� log
N

ni|fflffl{zfflffl}
IDF

ð1Þ

where N is the total number of documents in the training
set and ni is the number of documents in which the
term tk appears. TFðtk, djÞ is a function that computes
the frequency of the token tk in the document dj.
Learning combines vectors of positive and negative
examples into a prototype vector c! for each class in
the set of classes C. The method computes a classifier
ci
!

¼ h!1i, . . . ,!jTjii for category ci (T is the vocabulary,
that is the set of distinct terms in the training set) by
means of the formula:

!ki ¼ � �
X

fdj2POSig

!kj

jPOSij
� � �

X
fdj2NEGig

!kj

jNEGij
ð2Þ

where !kj is the TFIDF weight of the term tk in document
dj, POSi and NEGi are the set of positive and negative
examples in the training set for the specific class ci,
while � and � are control parameters that allow setting
the relative importance of all positive and negative
examples. To assign a classec to a document dj, the simi-
larity between each prototype vector ci

! and the docu-
ment vector dj

!
is computed and ec will be the ci with

the highest value of similarity. We propose a modified
version of this method, that manages documents

{http://www.Amazon.com

Text learning for user profiling in e-commerce 907



represented using different slots. As described in sec-
tion 2.1, an item is represented by its slots. If m is the
index of the slot (m ¼ 1, 2, 3 for the book descriptions
and m ¼ 1, 2, 3, 4, 5 for the movie descriptions), an
item is represented by a list of m bag of words:

dj ¼ hwm
1j, . . . ,w

m
jTmjj

i

where jTmj is the cardinality of the vocabulary for the
slot sm and wm

kj is the weight of the term tk in the
document dj, in the slot sm. Each weight wm

kj is computed
as follows:

TFIDFðtk, dj, smÞ ¼ TFðtk, dj, smÞ � log
N

nkm
ð3Þ

TFðtk, dj, smÞ is the frequency of term tk in the document
dj in the slot sm; the inverse document frequency of the
term tk in the slot sm is computed as the logarithm of
the ratio between the total number of documents N
and the number of documents containing the term tk
in the slot sm. Given a user u and a set of rated items
in a specific genre (e.g., Comedy for movies and
Business for books), the aim is to learn a profile able
to recognize items liked by the user in that genre.
Learning consists in inducing one prototype vector for
each slot: these (three or five) vectors will represent the
user profile. The rationale of having distinct components
of the profile is that words appearing in a ‘heavy’ slot
such as the title could be more indicative of preferences
than words appearing in other slots such as the annota-
tion, having a low informative power. For these reasons,
each prototype vector of the profile could contribute
in a different way to the calculation of the similarity
between the vectors representing an item and the vectors
representing the user profile. Another key issue of our
modified version of the Rocchio algorithm is that it
separately exploits the training examples: it learns two
different profiles pi

!
¼ h!m

1i, . . . ,!
m
jTmji

i, for a user u and
a category ci by taking into account the ratings given
by the user on documents in that category. The rating
ru,j on the document dj is a discrete judgment ranging
from 1 to MAX. It is used to compute the coordinates
of the vectors in both the positive and the negative
user profile:

!m
ki ¼

X
fdj2POSig

!m
kj � r

0
u, j

jPOSij
ð4Þ

!m
ki ¼

X
fdj2NEGig

!m
kj � r

0
u, j

jNEGij
ð5Þ

where r0u, j is the normalized value of ru,j ranging
between 0 and 1 (respectively corresponding to ru, j ¼ 1
and MAX), POSi ¼ fdj 2 Trjru, j > MAX=2g,
NEGi¼fdj 2 Trjru, j � MAX=2g, and !m

kj is the weight

of the term tk in the document tj in the slot sm computed
as in equation (3), where the idf factor is computed over
POSi or NEGi depending on the fact that the term tk is
in the slot sm of an item rated as positive or negative (if
the term is present in both positive and negative items
two different values for it will be computed).
Computing two different idf values for a term led us to
consider the rarity of a term in positive and negative
items, in an attempt to discover the informative power
of a term in recognizing interesting items. Equations
(4) and (5) differ from the classic formula in the fact
that the parameters � and � are substituted by the rat-
ings r0u, j that allow us to give a different weight to each
document describing the item in the training set.

The similarity between a profile pi
! and an item dj

!

is obtained by computing m partial similarity
values between each pair of corresponding vectors in
pi
! and dj

!
:

simð dj
!

, pj
!

Þ ¼
Xm
s¼1

simðd s
j

!
, p s

j

!
Þ � �s ð6Þ

A weighted average of the m (m is the number of
slots) values is computed, assigning a different weight
�s to reflect the importance of a slot in classifying an
item.

In our experiments on movies, we used �1 ¼ 0:1 (title),
�2 ¼ 0:15 (director), �3 ¼ 0:15 (cast), �4 ¼ 0:25 (sum-
mary), and �5 ¼ 0:35 (keywords). In the experiments
on books, we used �1 ¼ 0:5 (title), �2 ¼ 0:4 (authors),
and �3 ¼ 0:1 (annotation).

The values �s were decided according to experiments
not reported in the paper for the sake of brevity. We
considered different values for each �s and repeated
the experiments reported in section 4 using the selected
values. The values reported here are those that allowed
us to obtain the best predictive accuracy. Weakest
results are obtained when setting higher the �s values
of slots containing proper names. The main outcome
of the experiments was that slots containing ‘free text’
(and not proper names alone, like slots authors,
and cast, and director) should be ‘heavier’ in computing
similarity. Since the user profile is composed by both the
positive and the negative profiles, we compute two simi-
larity values, one for each profile. The document dj is
considered as interesting only if the similarity value of
the positive profile is higher than the similarity of the
negative one. The method has been implemented by
developing a system called RocchioProfiler, which was
used to evaluate the proposed algorithm.

3.1 INTHELEX

INTHELEX (INcremental THEory Learner from
EXamples) is a learning system for the induction of

908 M. Degemmis et al.



hierarchical theories from positive and negative
examples. It is fully and inherently incremental:
in addition to the possibility of taking as input a pre-
viously generated version of the theory, learning
can also start from an empty theory and from the
first available example. INTHELEX can learn
simultaneously various concepts, possibly related to
each other, expressed as (sets of) function free
clauses to be interpreted according to the Object
Identity assumption (Semeraro 1998). Examples
describe the observations by means of only basic
non-negated predicates of the representation language,
and specifies all the classes for which the observed
object is a positive example and all those for which it
is a negative one. A positive example for a concept
is not considered as a negative example for all
the other concepts, unless it is explicitly stated.
INTHELEX incorporates two inductive operators,
one for generalizing definitions that reject positive
examples and the other for specializing definitions
that explain negative examples. Both these operators,
when applied, change the set of examples the theory
accounts for. In particular, when a positive example is
not covered, completeness is restored in one of the
following ways:

. Replacing a clause in the theory with one of its
generalizations against the problematic example;

. Adding a new clause to the theory, obtained by
properly turning constants into variables in the
problematic example;

. Adding the problematic example as a positive
exception.

When a negative example is covered, consistency is
restored by performing one of the following actions:

. Adding positive literals that are able to characterize all
the past positive examples of the concept (and exclude
the problematic one) to one of the clauses that concur
to the example coverage;

. Adding a negative literal that is able to discriminate
the problematic example from all the past positive
ones to the clause in the theory by which the
problematic example is covered;

. Adding the problematic example as a negative
exception.

We were led by a twofold motivation to exploit
INTHELEX on the problem of learning user
profiles. First, its representation language (First-Order
Logic) is more intuitive and human readable than
values exploited and provided by numeric/probabilistic
approaches. Second, incrementality is fundamental
in the given task, since new information on a user is
available each time he issues a query, and it would be
desirable to be able to refine the previously generated

profile instead of learning a new one from

scratch. Moreover, a user’s interests might change in

time, a problem that only incremental systems are able

to tackle.
Each item (book/movie) description is represented

in terms of its components that are three in the case

of the books, i.e., title, author, and annotation, and

five in case of the movies, i.e., title, cast, director,

keywords, and summary. Such components were

codified in the description of the books by using

predicates slot_title(b,t), slot_author(b,au),

and slot_annotation(b,an), indicating that

the objects t, au, and an are, respectively, the title,

author, and annotation of the book b, and in the

description of the movies by means of the predicates
slot_title(m,t), slot_cast(m,c), slot_director

(m,d), slot_keywords(m,k) and slot_summary(m,tr),

with the same meaning above reported. Any

word in the item description, both books and movies,

is represented by a predicate corresponding to its

stem, and linked to both the item itself, book or

movie, and the single slots in which it appears.

For instance, in case of book description, predicate

prolog(slott, slottitleprolog) indicates that the

object slottitleprolog has stem ‘prolog’ and is

contained in slot slott; in such a case, also a

literal prolog(book) is present to say that stem

‘‘prolog’’ is present in the book description. Formerly,

INTHELEX was not able to handle numeric values;

thus, a discretization was needed. In the new version,

it can represent numeric information and manipulate

numeric intervals, so the number of occurrences

of each word in each slot was represented by means

of a predicate occ(Y,X), indicating that term Y occurs

X times. Instead of learning a definition for each

of the possible votes, just two possible classes of

interest are learnt: ‘likes’, describing that the user

likes an item (ratings from 6 to 10 for books preferen-

ces and from 4 to 6 for movies preferences), and its

opposite ‘not(likes)’ (ratings from 1 to 5 for books

and from 1 to 3 for movies). Such a discretization

step is automatically carried out by an abstraction

operator embedded in INTHELEX, whose cost is

negligible since each numeric value is immediately
mapped onto the corresponding discretized symbolic

value. Figure 1 shows an example for the class likes.

The clause means that the user likes the book with

id¼50147799 that contains in the slot title a word

whose stem is practic (one or two times) and a

word whose stem is prolog (one or two times),

in the slot authors the word l_sterling (one or two

times). Figure 2 shows a rule learned by

INTHELEX for the class likes in the movie recom-

mending scenario.

Text learning for user profiling in e-commerce 909



3.2 Item recommender

ITR (ITem Recommender) implements a Bayesian
learning algorithm (Mitchell 1997) able to classify text
belonging to a specific category as interesting or not
interesting for a particular user. For example, the
system could learn the target concept ‘textual descrip-
tions the user finds interesting in the category Computer
and Internet’.
According to the Bayesian approach to classify text

documents, given a set of classes C¼ fc1, . . . , cjCjg,
the conditional probability of a class cj given a
document d is calculated as follows:

PðcjjdÞ ¼
PðcjÞ

PðdÞ
PðdjcjÞ

In our problem, we have only two classes: cþ repre-
sents the positive class (user-likes, corresponding to rat-
ings from 6 to 10 for books and from 4 to 6 for movies),
and c� the negative one (user-dislikes, ratings from 1 to
5 for books and from 1 to 3 for movies). Since instances
are represented as a vector of documents, (one for each
BOW), and assumed that the probability of each word is
independent of the word’s context and position, the con-
ditional probability of a category cj given an instance di
is computed using the formula:

PðcjjdiÞ ¼
PðcjÞ

PðdiÞ

YjSj
m1

Yjbimj
k¼1

Pðtkjcj, smÞ
nkim ð7Þ

where S¼ fs1, s2, . . . , sjSjg is the set of slots, bim is the
BOW in the slot sm of the instance di, nkim is the
number of occurrences of the token tk in bim.
In (7), since for any given document the prior P(di) is

a constant, this factor can be ignored if the only

interest concerns a ranking rather than a probability
estimate. To calculate (7), we only need to estimate
the terms PðcjÞ and Pðtkjcj, smÞ, from the training set.
Each instance is weighted according to the user
rating r, normalized in order to obtain values ranging
between 0 and 1:

wi
þ ¼

r� 1

MAX
; wi

� ¼ 1� wi
þ ð8Þ

The weights in (8) are used to estimate the two probabil-
ity terms from the training set TR:

P̂ðcjÞ ¼

PjTRj
i¼1 wi

j

jTRj
ð9Þ

P̂ðtkjcj, smÞ ¼

PjTRj
i¼1 wi

jnkimPjTRj
i¼1 wi

jjbimj
ð10Þ

In (10), nkim is the number of occurrences of the term tk
in the slot sm of the ith instance, and the denominator
denotes the total weighted length of the slot sm in the
class cj. The length of bim is computed by adding the
occurrences of the words in the slot sm of the ith
instance. Therefore, P̂ðtkjcj, smÞ is calculated as a ratio
between the weighted occurrences of the term tk in slot
sm of class cj and the total weighted length of the slot.
The final outcome of the learning process is a probabil-
istic model used to classify a new instance in the class cþ
or c�. The model can be used to build a personal profile
including those words that turn out to be most indicative
of the user’s preferences, according to the value of the
conditional probabilities in (10).

4. Empirical evaluation

The goal of the experiments reported in this section has
been the comparison of ITR, RocchioProfiler and
INTHELEX in terms of several metrics. Two
different data sets have been used in order to compare
the systems in different domains: book recommending
and movie recommending. The data sets are described

Figure 1. First-order representation of a book.

Figure 2. Rule learned by INTHELEX.

910 M. Degemmis et al.



in section 4.1 and section 4.2. Three main experiments
have been conducted:

. Experiment 1: The classic Rocchio relevance feedback
algorithm is compared to the novel approach imple-
mented by RocchioProfiler in the task of book recom-
mendation.

. Experiment 2: ITR, RocchioProfiler and INTHELEX
are compared in the task of book recommendation.

. Experiment 3: ITR, RocchioProfiler and INTHELEX
are compared in the task of movie recommendation.

4.1 The EachMovie data set

The EachMovie project was conducted by the Compaq
Systems Research Center{ over an 18-month period
from 1996 to 1997. During this time, a large data set
of user movie ratings was collected, consisting of
2,811,983 ratings for 1628 movies from 72,916 users.
The movies are rated on a 6-point scale (from 1 to 6).
The 1 to 6 star rating used externally on EachMovie is
mapped linearly to the interval [0,1].
The original data set does not contain any informa-

tion about the content of the movies. The content infor-
mation for each movie was collected from the Internet
Movie Database{ using a simple crawler that, following
the IMDb link provided in the original data set, collects
information from the various links of the main URL.
In particular the crawler gathers the Title, the
Director, the Genre, that is the category of the movie,
the list of Keywords, the Summary and the Cast. The
retrieved content data is provided in a CSV (comma
separated value) text file. After appropriate preproces-
sing (the operations performed on each document are
listed in table 1), the content is organized and stored
in a relational database.
The content of slots title, director and cast was

only tokenized because we observed that the process of
stopwords elimination produced some unexpected

results: for example, after stopwords elimination, each
slot title made exclusively of stopwords (like ‘It’)
became empty. Moreover, it makes no sense to process
by stemming and stopword elimination on slots contain-
ing only proper names.

Movies are subdivided into different genres: Action,
Animation, Art_Foreign, Classic, Comedy, Drama,
Family, Horror, Romance, and Thriller. For each genre
or category, a set of five users was randomly selected
among users that rated n items, 30 � n � 100 in that
movie category. In this way, for each category, a data
set of at least 150 triples (user, movie, and rating) was
obtained. Table 2 summarizes the data used for the
experiments. Notice that the number of movies rated
as positive and negative for each genre is balanced
only in data set 5, (60–65% positive, 35–40% negative),
while is slightly unbalanced in data sets 2, 7, 8 (65–75%
positive, 25–35% negative), and is strongly
unbalanced in data sets 1, 3, 4, 6, 9, 10 (over 75%
positive). Rate frequencies of this data set are shown
in table 3.

4.2 The BOL data set

The Bertelsmann Online (BOL) data set is a collection of
textual book descriptions rated by real users according
to their preferences. Eight book categories were selected
at the Web site of a virtual bookshop. For each book
category, a set of book descriptions was obtained by
analyzing Web pages using an automated extractor
and stored in a local database. Common preprocessing

Table 1. Preprocessing operations performed on the
EachMovie data set.

Slot Tokenization Stopwords Stemming

Title X

Cast X

Director X

Summary X X X

Keywords X X X

Table 2. 10 ‘‘Genre’’ data sets obtained from the original
EachMovie data set.

Id genre genre

Number of

rated
movies

Average
length

(in words)
slot ’summary’

%
POS

%
NEG

1 Action 192 188.04 79 21

2 Animation 163 93.86 75 25
3 Art_Foreign 240 80.82 92 8
4 Classic 240 174.57 97 3
5 Comedy 239 107.07 63 37

6 Drama 249 133.02 84 16
7 Family 211 120.03 74 26
8 Horror 196 169.95 75 25

9 Romance 211 92.73 86 14
10 Thriller 187 141.43 85 15

2128 130.15 81 19

{http://www.research.compaq.com/SRC/

{IMDB, http://www.imdb.com

Text learning for user profiling in e-commerce 911



operation have been performed on the book descriptions

(table 4).
Each user involved in the experiments was requested

to choose one or more categories of interest and to

rate 40 or 80 books in each selected category, providing

1–10 discrete ratings. In this way, for each pair user

category, a data set of 40 or 80 rated books was

obtained (table 5). For each user we considered:

. Rated books: number of rated books with the indica-
tion of negative (rates in the range 1–5) and positive

(rates in the range 6–10) ones;

. Books with annotation: number (and percentage) of
books with a textual annotation (slot annotation not

empty);

. Average annotation length: average length (in words)
of the annotations;

. Average rate �/�: average rate provided by the user
and standard deviation.

We can observe that the number of books rated as

positive and negative for each user is balanced, except

for the user 23 that has rated 39 books as positive and

only 1 as negative. Then, almost the totality of books

rated by the users contain annotations: the user 33 is

the only one with a low percentage. As far as the average

annotation length, we can notice that only users 26 and

33 have values lower than the others.

4.3 Performance measures

Classification effectiveness is measured in terms of the
classic Information Retrieval notions of precision,
recall and accuracy, adapted to the case of text
categorization (Sebastiani, 2002).

Let TP (true positive) be the number of relevant test
documents correctly classified, that is documents that
both the system and the user deemed relevant. Then,
recall and precision are computed as follows:

Re ¼
TP

number of documents the user deemed relevant

Pr ¼
TP

number of documents the system deemed relevant

Also used is F-measure, which is a combination of
precision and recall:

F ¼
2� Re� Pr

Prþ Re

In other words, precision is the proportion of items
classified as relevant that are really relevant, and recall
is the proportion of relevant items that are classified as
relevant. We adopted also accuracy, which represents
the percentage of items correctly classified (as relevant
or not relevant) computed as reported in (Sebastiani,
2002).

4.4 Experimental setup

In the design of all the experiments and the evaluation
step, the concept of ‘interesting item’, that we call
relevant item is central. In the movie recommendation
task, users adopted a 6-point discrete scale for rating
items: a movie in a specific category is considered
as relevant by a user if the rating is greater or equal
than 3. For books, we adopted a 10-point scale: if the

Table 4. Preprocessing operations performed on the BOL
data set.

Slot Tokenization Stopwords Stemming

Title X

Authors X

Annotation X X X

Table 3. Rate frequencies in EachMovie data set.

Category Rate 1 Rate 2 Rate 3 Rate 4 Rate 5 Rate 6

1 Action 14 4 21 53 60 40

2 Animation 18 3 19 41 43 39
3 Art Foreign 2 2 14 59 95 68
4 Classic 2 0 5 49 103 81

5 Comedy 14 19 55 67 65 19
6 Drama 12 6 21 93 88 29
7 Family 21 11 22 62 51 44

8 Horror 10 12 26 60 46 42
9 Romance 1 2 27 72 92 17
10 Thriller 7 4 17 59 78 22

Mean 10.1 6.3 22.7 61.5 72.1 40.1

912 M. Degemmis et al.



rating of the book is greater than 5, then the book is
relevant, otherwise it is not relevant. The Rocchio-
based profiling algorithm classifies an item as relevant
if the similarity score of the class likes is greater than
the one for the class dislikes, while ITR considers
an item di as relevant if PðcþjdiÞ � 0:5, calculated as in
equation (7). Symmetrically, INTHELEX considers as
relevant those items covered by the inferred theory.

Experiment 1 This experiment has been conducted on
the BOL data set. We executed one experiment for each
user (table 5) in the data set: the ratings of each specific
user and the content of the books rated have been used
for learning the user profile and measuring its predictive
accuracy, using the aforementioned measures.
Each experiment consisted of:

1. Selecting ratings of the user and the content of the
books rated by that user;

2. Splitting the selected data into a training set Tr and a
test set Ts;

3. Using Tr for learning the corresponding user profile;
4. Evaluating the predictive accuracy of the learned

profile on the Ts, using the aforementioned
measures.

The methodology adopted for obtaining Tr and Ts
was the K-fold cross-validation, that works by partition-
ing the data into K equal-sized segments and holding out
one segment at a time for test purposes. We fixed K¼10,
and thus we ran 10 experiments on each user by aver-
aging the evaluation measures computed in the test
phase.

Table 6 and figure 3 show the results of the experi-
ments using the modified version of the Rocchio algo-
rithm and the classic Rocchio one, obtained by setting
the values of the control parameters � and � according

Table 5. BOL data set information.

User ID Category Rated Books with Annot. Average Ann. Length Average Rating

books Annot. Length �/�

37 SF, Horror and Fantasy 40 (22þ, 18�) 40 (100%) 30.475 4.87/2.731
26 SF, Horror and Fantasy 80 (46þ, 34�) 70 (87.5%) 19.512 5.49/3.453
30 Computer and Internet 80 (40þ, 40�) 80 (100%) 56.425 5.31/2.462

35 Business 80 (30þ, 50�) 78 (97.5%) 64.150 4.21/3.488
24c Computer and Internet 80 (38þ, 42�) 76 (95%) 49.100 5.71/3.174
36 Fiction and literature 40 (25þ, 15�) 40 (100%) 40.225 5.87/1.805

24f Fiction and literature 40 (27þ, 13�) 38 (95%) 45.500 6.40/2.662
33 Sport and leisure 80 (35þ, 45�) 49 (61.25%) 23.337 4.34/3.342
34 Fiction and literature 80 (42þ, 38�) 70 (87.5%) 44.925 5.61/2.492

23 Fiction and literature 40 (39þ, 1�) 36 (90%) 45.875 7.25/1.089
640 (344þ, 296�) 537 (83%) 41.965

Table 6. Performance of the Rocchio algorithms on 10 different data sets. Notice that 9 users rated books in one category, while
user 24 rated books in two categories.

Precision Recall F1 Accuracy

Id

�¼ 16

�¼ 4

New

Rocchio

�¼ 16

� ¼ 4

New

Rocchio

�¼ 16

�¼ 4

New

Rocchio

�¼ 16

�¼ 4 New

37 0.641 0.925 1 0.717 0.781 0.808 0.675 0.800
26 0.797 0.845 1 0.830 0.887 0.837 0.837 0.812

30 0.500 0.534 1 0.875 0.666 0.663 0.500 0.550
35 0.391 0.690 1 0.700 0.562 0.695 0.412 0.762
24c 0.471 0.675 0.966 0.583 0.633 0.626 0.475 0.687

36 0.616 0.767 0.916 0.700 0.737 0.732 0.600 0.675
24f 0.675 0.825 1 0.833 0.805 0.829 0.675 0.750
33 0.651 0.743 0.966 0.917 0.778 0.821 0.737 0.812
34 0.525 0.644 0.975 0.645 0.682 0.644 0.525 0.625

23 0.966 0.975 0.966 0.975 0.966 0.975 0.950 0.950

Mean 0.623 0.762 0.979 0.777 0.750 0.763 0.639 0.742

Text learning for user profiling in e-commerce 913



to the literature (Sebastiani 2002). For pairwise

comparison of the two methods, the nonparametric

Wilcoxon signed rank test was used, since the number

of independent trials (i.e., users) is relatively low and

does not justify the application of a parametric test,

such as the t-test (Orkin and Drogin 1990). Requiring

a significance level p < 0:05, the test revealed that

there is a statistically significant difference in perfor-

mance both for precision and accuracy in favor of the

modified Rocchio and for recall in favor of the classic

Rocchio method (�¼ 16, �¼ 4), but not as regards F1.

These results led us to conclude that the new method

is more effective than the traditional one in this

domain, due to the fact that trust is a key word in

giving recommendations: the systems should minimize

false-positive errors. This means that it is better to

provide users with a small number of high quality

recommendations than to overload users with many

recommendations that they should manually filter. In

the next experiments, we compare the performance of

the new Rocchio method with those of ITR and

INTHELEX.

Experiment 2 This experiment has been conducted on

the BOL data set.
Table 7 and figure 4 show the results of the

experiment aimed at comparing the new Rocchio

method with the ones implemented by INTHELEX

and ITR in terms of average precision, recall, F1, and

accuracy of the models learned in the 10 folds for each

data set. The last row of the table reports the mean

values, averaged on all data sets. The results of

INTHELEX and ITR are described in more detail

in the work by Esposito et al. (2003). The most impor-

tant result is that the proposed method outperforms

the other ones as regards accuracy. It is surprising to

observe that the algorithm reaches high values of preci-

sion and recall for the users 26 and 37, even if the aver-

age annotation lengths of the documents rated by the

users are among the shortest in the data set. This

means that although the profiles contain few words for

computing similarity on new documents, these words

are indicative of the users’ preferences. In general, the

new Rocchio algorithm outperforms ITR in precision,

but not INTHELEX (requiring a significance level

p < 0:05 the systems are equivalent). Another remark

worth noting is that theories learned by the symbolic

system are very interesting from a human understand-

ability viewpoint, in order to be able to explain and jus-

tify the recommendations provided by the system.

Experiment 3 The goal of this experiment is to com-

pare RocchioProfiler, ITR and INTHELEX in the

task of movie recommendation. Thus, this experiment

has been conducted on the EachMovie data set.
For each ‘genre’ data set, we ran 5 experiments, one

for each user in the data set: the triples (user,movie,

rating) of each specific user and the content of the

Figure 3. Performance of the Rocchio algorithms on 10 different data sets. The white bar represents classical Rocchio and the
black bar New Rocchio.

914 M. Degemmis et al.



rated movies have been used for learning the user profile

and measuring its predictive accuracy, using the mea-

sures presented in section 4.3.
Each experiment consisted in:

1. Selecting the triples (user, movie, rating) of the

user and the content of the movies rated by that user;
2. Splitting the selected data into a training set Tr and a

test set Ts;
3. using Tr for learning the corresponding user profile;
4. evaluating the predictive accuracy of the learned

profile on the Ts, using the aforementioned

measures.

The methodology adopted for obtaining Tr and Ts was

the 10-fold cross-validation. The results of each ‘‘genre’’

data set are reported in table 8 and figure 5.
The last row of the table reports the mean values,

averaged on all data sets. We have carried out a pairwise

comparison of the results, using the nonparametric

Wilcoxon signed-rank test (Orkin and Drogin 1990).

The most important result is that the new Rocchio

Table 7. Performance of the systems on BOL data set.

Precision Recall F1 Accuracy

Id ITR INTH. New ITR INTH. New ITR INTH. New ITR INTH. New

Rocchio Rocchio Rocchio Rocchio

37 0.767 0.967 0.925 0.883 0.500 0.717 0.821 0.659 0.808 0.731 0.695 0.800
26 0.818 0.955 0.845 0.735 0.645 0.830 0.774 0.770 0.837 0.737 0.768 0.812
30 0.608 0.583 0.534 0.600 0.125 0.875 0.604 0.206 0.663 0.587 0.488 0.550

35 0.651 0.767 0.690 0.800 0.234 0.700 0.718 0.359 0.695 0.725 0.662 0.762
24c 0.586 0.597 0.675 0.867 0.383 0.583 0.699 0.467 0.626 0.699 0.599 0.687
36 0.783 0.900 0.767 0.783 0.300 0.700 0.783 0.450 0.732 0.700 0.513 0.675

24f 0.785 0.900 0.825 0.650 0.350 0.833 0.711 0.504 0.829 0.651 0.535 0.750
33 0.683 0.750 0.743 0.808 0.308 0.917 0.740 0.437 0.821 0.730 0.659 0.812
34 0.608 0.883 0.644 0.490 0.255 0.645 0.543 0.396 0.644 0.559 0.564 0.625

23 0.500 0.975 0.975 0.130 0.900 0.975 0.206 0.936 0.975 0.153 0.875 0.950
Mean 0.679 0.828 0.762 0.675 0.400 0.777 0.662 0.520 0.763 0.627 0.636 0.742

Figure 4. Performance of the systems on BOL data set. The white bar represents ITR, the strip one INTHELEX and the black bar
New Rocchio.

Text learning for user profiling in e-commerce 915



algorithm outperforms both ITR and INTHELEX in
precision (significance level p < 0:05), while experiment
2 showed that INTHELEX had a better precision.
In particular, the new Rocchio algorithm

outperforms ITR on data set 5 (þ14.5%), where the
number of movies rated as positive and negative is
balanced (table 2). This could be due to the different
representation of the profiles adopted by the systems:
ITR exploits positive and negative examples to learn a

unique profile, while the Rocchio algorithm uses in a
separate way positive and negative examples for learning
two different profiles, one for the class ‘‘interesting
movies’’ (positive class) and another one for the class
‘‘not interesting movies’’ (negative class). The conclu-
sion is that the Rocchio method takes into account in
a better way the negative examples. This conclusion
is supported by the fact that for the other data sets,
in which the percentage of negative examples is lower

Table 8. Performance of the systems on the EachMovie data set.

Precision Recall F1 Accuracy

Id ITR INTH. New ITR INTH. New ITR INTH. New ITR INTH. New

Rocchio Rocchio Rocchio Rocchio

1 0.804 0.777 0.825 0.988 0.673 0.905 0.885 0.691 0.849 0.795 0.612 0.769
2 0.720 0.767 0.832 0.823 0.757 0.930 0.751 0.740 0.879 0.750 0.700 0.837
3 0.941 0.942 0.934 1.000 0.957 0.965 0.969 0.944 0.944 0.941 0.904 0.905

4 0.978 0.978 0.976 1.000 0.950 0.985 0.989 0.959 0.978 0.980 0.929 0.961
5 0.607 0.722 0.752 0.801 0.594 0.782 0.691 0.597 0.736 0.691 0.629 0.687
6 0.860 0.827 0.863 0.977 0.779 0.908 0.923 0.783 0.869 0.858 0.699 0.787

7 0.728 0.763 0.802 0.825 0.703 0.845 0.770 0.703 0.810 0.820 0.708 0.777
8 0.782 0.797 0.796 0.965 0.712 0.893 0.863 0.719 0.831 0.769 0.678 0.746
9 0.875 0.891 0.862 1.000 0.862 0.903 0.933 0.849 0.868 0.875 0.769 0.789

10 0.857 0.889 0.862 0.983 0.837 0.961 0.912 0.841 0.898 0.848 0.786 0.836
Mean 0.815 0.835 0.850 0.936 0.782 0.908 0.868 0.782 0.866 0.833 0.741 0.809

Figure 5. Performance of the systems on EachMovie data set. The white bar represents ITR, the strip one INTHELEX and the

black bar New Rocchio.

916 M. Degemmis et al.



(<30%), the difference in precision, even if it persists
again in favor of Rocchio, never reaches the value of
14.5%.
On the other hand, as regards Recall, the probabilistic

and the statistical approaches outperform the symbolic
approach, like in experiment 2: the difference between
RocchioProfiler and ITR is statistically significant in
favor of ITR, while in experiment 2 RocchioProfiler
had a better performance. This could be due to the
increased size of the data set, that allows ITR to produce
more accurate estimates of the words found in the train-
ing set. As regards F1, the difference between ITR
and RocchioProfiler, both outperforming INTHELEX,
is not statistically significant. Finally, the overall predic-
tive accuracy of profiles learned by ITR is higher than
the ones of the other systems. These results led us to con-
clude that the probabilistic and the statistical
approaches are more effective than the symbolic
approach in the task of movie recommendation. This
could be a general indication that numerical techniques
perform better that symbolic techniques when the size of
the documents become larger: the average length of the
documents in the EachMovie data set is higher with
respect to that of documents in the BOL data set. We
measured the average length of the slot ‘summary’ for
movies and the average length of the slot ’annotation’
for books because in these slots there is more text than
in the other ones. See tables 2 and 5 for more details.
Finally, we observed also that all systems performed
better when users have a tendency to express clear pre-
ferences, that means when they provide ratings on the
boundaries of the voting scale. In this case,
the examples used to train the systems represent a
clear indication of user preferences. This is confirmed
by the fact that all systems achieve their highest
level of accuracy on data sets 3 and 4, in which there
is strong positive evidence of user interests (both data
set are strongly unbalanced in favor of positive examples
and the most frequent ratings are 5 and 6, see tables 2
and 3).
From what said above, it seems that the approaches

compared in this paper have complementary pros and
cons. This naturally leads us to think that some
cooperation could take place in order to reach higher
effectiveness of the recommendations. For instance,
since the probabilistic method has a better accuracy,
it could be used for selecting which items should be
presented to the user. Then, some kind of filtering
could be applied on them, in order to present to the
user first those items that are considered positive by
the symbolic theories, which are characterized by a
slightly low precision but that are more readable from
a human understandability viewpoint, and thus can
be used to explain and justify the recommendations
provided by the system.

5. Conclusions

The paper proposed a new Rocchio-based method able
to discover user preferences from textual descriptions
of items in online catalogues of e-commerce Web sites.
In order to evaluate the effectiveness of the approach,
we performed an experimental session on several data
sets. Results have been compared with respect to the
performance of an ILP approach and a probabilistic
one. The comparison highlighted the usefulness and
drawbacks of each method, suggesting possible ways
of integrating the approaches to offer better support to
users.

Acknowledgments

This research was partially funded by the European
Commission under the 6th Framework Programme
IST Integrated Project VIKEF – Virtual Information
and Knowledge Environment Framework (Contract
no. 507173, Priority 2.3.1.7 Semantic-based Knowledge
Systems; more information at http://www.vikef.

net).

References

F. Asnicar and C, Tasso, ‘‘ifweb: a prototype of user model-based
intelligent agent for documentation filtering and navigation in the
word wide web’’, in Proceedings of 1st Int. Workshop on adaptive
systems and user modeling on the World Wide Web, 1997, pp. 3–12.

D. Billsus and Michael J. Pazzani, ‘‘A hybrid user model for news
story classification’’, in Proceedings of the Seventh International
Conference on User Modeling. Banff Canada, 1999, pp. 99–108.

F. Esposito, G. Semeraro, S. Ferilli, M. Degemmis, N. Di Mauro,
T.M.A. Basile, and P. Lops, ‘‘Evaluation and validation of two
approaches to user profiling’’, in Proceeding of the ECML/PKDD-
2003 First European Web Mining Forum, 2003, pp. 51–63.

H. Lieberman, ‘‘Letizia: an agent that assists web browsing’’,
in Claire Nédellec and Céline Rouveirol, editors, Proceedings of
the International Joint Conference on Artificial Intelligence, 1995,
pp. 924–929.

L. Ma, J. Shepherd and A. Nguyen, ‘‘Document classification via
structure synopses’’, in Proceedings of the Fourteenth Australasian
database conference on Database technologies 2003, 2003.

T. Mitchell, Machine Learning. New York, McGraw-Hill, 1997.
D. Mladenic, ‘‘Text-learning and related intelligent agents: a survey’’,
IEEE Intelligent Systems, 14, pp. 44–54, 1999.

R. J. Mooney and L. Roy, ‘‘Content-based book recommending using
learning for text categorization’’, in Proceedings of the 5th ACM
Conference on Digital Libraries, pp. 195–204, San Antonio, US,
ACM Press, New York, US, 2000.

M. Orkin and R. Drogin, Vital Statistics, New York, McGraw-Hill,
1990.

M. Pazzani and D. Billsus, ‘‘Learning and revising user profiles:
The identification of interesting web sites’’, Machine Learning, 27,
pp. 313–331, 1997.

J. Rocchio, ‘‘Relevance feedback information retrieval,’’ in Gerald
Salton, editor, The SMART retrieval system – experiments in auto-
mated document processing, pp. 313–323. Englewood Cliffs, NJ,
Prentice-Hall, 1971.

G. Salton and M.J. McGill, Introduction to Modern Information
Retrieval. New York, McGraw-Hill, 1983.

Text learning for user profiling in e-commerce 917



F. Sebastiani,. ‘‘Machine learning in automated text categorization’’,
ACM Computing Surveys, 34, 2002.

G. Semeraro, F. Esposito, D. Malerba, N. Fanizzi, and S. Ferilli,
‘‘A logic framework for the incremental inductive synthesis of data-
log theories,’’ in N. E. Fuchs, editor, Logic Program Synthesis and

Transformation, number 1463 in Lecture Notes in Computer
Science, pp. 300–321. Springer-Verlag, 1998.

A. Stefani and C. Strapparava, ‘‘Personalizing access to web sites: the
siteif project’’, in Proc. of 2nd Workshop on Adaptive Hypertext and
Hypermedia, 1998.

918 M. Degemmis et al.


