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One  of  the  main  problem  in  social  networks  and  viral  
marketing is that of finding a set of nodes maximizing the  
spread of  influence. Corresponding algorithms solving this  
problem are required to have both guaranteed accuracy and  
high scalability. Greedy algorithms are able to find accurate  
solutions  but  fail  in  efficiency.  This  paper  presents  a  
modification  of  an  existing  greedy  algorithm to  solve  the  
influence  maximization  problem  by  integrating  a  
memoization  technique.  Experimental  results  with  a  first  
prototypical  implementation  on  real-world  social  networks  
proved the validity of the proposed technique. 
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1. Introduction
Nowadays people are connected by heterogeneous social relationships 

in  large-scale  online  social  networks  that  provide  a  platform for  information 
dissemination and marketing. The success of viral marketing is rooted in the 
interpersonal influence empirically studied in [Richardson et al., 2002; Huang et 
al.,  2012]. With the advent of social networks the information spreads in the 
form of “word-of-mouth” communications, and it is noticeable to observe how 
much they affect our daily life style.

Influence maximization is a fundamental problem for viral marketing and 
it has been originally formulated as an optimization problem in [Kempe et al., 
2003]. It consists in finding a set of seed nodes which maximize the  influence 
spread in  a  social  network  computed  as  the  expected  number  of  nodes 
influenced by the seed nodes. In [Kempe et al., 2003] has been proved the NP-
completeness of the influence maximization problem and it has been provided a 
greedy approximation algorithm that yields an influence spread solution that is 
no less than a given bound of the optimal value.

Given a seed set of nodes there is no exact algorithm that gives the 
corresponding  influence  spread.  Usually  it  is  approximated  using  a  large 
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number of Monte Carlo simulations. However, this reduces the scalability of the 
general greedy algorithm proposed in [Kempe et al., 2003] since it requires too 
many Monte Carlo simulations. To overcome this problem one can reduces the 
times of  influence  spread  estimations  [Leskovec  et  al.,  2007,  Cheng et  al., 
2012],  or  proposes  various  heuristics  to  use  more  efficient  methods for 
influence spread estimation [Chen et al., 2010]. The hot interest in scalable and 
accurate methods to solve the influence maximization problem is confirmed by 
a lot of recent works [Chen et al., 2009; Goyal et al., 2011; Leskovec et al., 
2007; Jiang et al., 2011; Kimura et al., 2010].

Two widely  used information diffusion models  to  solve the  influence 
maximization problem [Kempe et al., 2003] are the  independent cascade (IC) 
[Kempe et al., 2003] and the linear threshold (LT) [Watts, 2002] models. The IC 
model is sender-centered and each active node independently influences its 
inactive  neighbors  with  given  diffusion  probabilities,  while  the  LT  model  is 
receiver-centered and a node is influenced by its active neighbors if their total 
weight exceeds the threshold for the node.

In this paper, we provide an optimization of an existing greedy algorithm 
[Cheng et al., 2012] with its corresponding evaluation adopting the IC model on 
two real world social networks.

2. Preliminaries
In order to mathematically model the information diffusion in a social 

network,  we firstly  recall  the IC and LT models  according to [Kempe et  al., 
2003].

Let G = (V, E) be a directed network (graph) where V is a set of nodes 
and E ⊂ V × V is a set of directed links. For each node v ∈ V, let F(v) be the 
set of all the nodes that have links from v (its children nodes), i.e., F(v) = {u ∈ V; 
(v, u) ∈ E}, and B(v) be the set of all the nodes that have links to v (its parent  
nodes), i.e.,  B(v) = {u ∈ V; (u,  v)  ∈ E}. We say a node is active if it has been 
influenced with the information. In the IC and LT models the diffusion processes 
unfold in discrete time steps, and it is assumed that nodes can switch their state 
only from inactive to active.

2.1 Independent Cascade Model
In the IC model it is necessary do define in advance a probability  pu,v, 

called  propagation probability, for each directed link. Given an initial set  A of 
active nodes the diffusion process works as follow. If a node u is active at step t, 
it has a chance to activate each currently inactive node v ∈ F(u) with probability 
pu,v.  Whether  or  not  u succeeds in  activating  v,  it  cannot  make any  further 
attempts  to  activate  v in  subsequent  time  steps  and  the  overall  process 
terminates if no more activations are possible.

2.2 Linear Threshold Model

In the LT model, for any node v ∈ V, it is necessary to specify a weight 
wu,v > 0 for each of its parent node u, such that their sum is lesser or equal to 1. 



When an initial set A of active nodes is given, and a threshold θv for each node 
v is set to be uniformly distributed in the interval [0,1],  the diffusion process 
works as follows. An inactive node v at time step t is influenced by each active 
parent node u according to the weight wu,v. If the total weight from active parents 
is greater than  θv, then  v will  be active at time step  t+1. The overall process 
terminates if no more activations are possible. 

Given an initial active set  A, let  σ(A) denote the expected number of 
active nodes at the end of the random process in the IC or in the LT model. We 
call σ(A) the influence degree of the set A.

2.3 Influence Maximization Problem
The  influence  maximization  problem  is  defined  as  follows.  Given  a 

positive integer k, find a set A of k nodes such that, for each set B of k nodes, 
σ(A) ≥ σ(B).

A greedy algorithm that  approximately solves this problem has been 
proposed in [Kempe et al., 2003], and it is sketched in the following.

1. Set A ← Ø
2. for i=1 to k do
3.    choose a node vi ∈ F maximizing σ(A U {v})
4.    set A ← A U {v}
5. endfor

In [Kempe et al., 2003], this algorithm has been proved to obtain an 
approximate solution whose value is at least (1 – 1/e)  σ(A*), where  A* is the 
optimal solution. This factor has been obtained by proving that the influence 
function  σ() is  submodular and using a result obtained in [Nemhauser et al., 
1978]. Formally, a submodular function satisfies:

f (S U {v}) - f (S) ≥ f (T U {v}) - f (T),
for all elements v and all pairs of sets S  ⊆ T.

2.4 Approximate Influence Degree
However,  how  to  exactly  computing  σ(A)  is  not  known  and  it  is 

approximated using a large amount of Monte Carlo simulations [Kempe et al., 
2003], thus degrading the efficiency of the algorithm. 

In  particular,  the  Monte  Carlo  approach  used  to  approximate  the 
influence degree  σ(A) in the IC model works as follows. Let  At be the set of 
nodes that are activated in the time step t, and A0 = S. For any link (u,v)  ∈ E 
such that u ∈ Ai and v is not yet activated, then v is activated by u in the time 
step t + 1 with the propagation probability pu,v. This process is repeated until Ai+1 

is empty.
The random process to estimate the influence degree in the LT model is 

quite  similar  to  that  used  for  the  IC model  but  taking  into  account  that  the 
probability  of  u activating  v is  usually  not  the  same as  the  probability  of  v 
activating u, thus requiring a slightly modification.



3.The new optimized algorithm
A recent interesting approach to overcome the problem to use a large 

amount of Monte Carlo simulations has been proposed in [Cheng et al., 2012]. 
The  authors  proved  that  the  submodularity  is  not  guaranteed  in  existing 
implementations  of  greedy  algorithm,  caused  by  the  independence  among 
Monte Carlo simulations executed in different iterations of the greedy algorithm. 
They proposed a static greedy algorithm to strictly guarantee the submodularity 
property, by reusing the results of Monte Carlo simulations during the whole 
process of greedy algorithm. The results is to dramatically reduce the random 
simulations thus effectively improving the scalability of the greedy approach.

In particular the authors of [Cheng et al., 2012] introduced the concept 
of snapshot obtained a priori according to the characteristic of the IC model. A 
snapshot is a graph G' obtained from the original graph G, where an edge (u, v) 
is  removed with  probability  1-pu,v.  Then, for each snapshot  G',  the influence 
spread of a set of nodes S is the number of nodes reachable from S. Hence, the 
influence degree σ(S) can be obtained by averaging over many snapshots.

The  process  of  the  corresponding  static  greedy  algorithm  is  the 
following:
4.randomly sampling R snapshots from the underlying social network G;
5.start from an empty seed set  S, then iteratively add one node a time into  S 
such  that  the node  provides  the  largest  marginal  gain  of  σ(S),  which is 
estimated on the R snapshots.

In particular, the static greedy algorithm, named Static, is formalized as 
follows, where R(S) is a function returning the nodes reachable from the nodes 
in S:

1. initialize S = ∅
2. for i = 1 to R do
3.     generate Gi' by removing each edge (u, v) from G with probability 1-pu,v 

4. endfor
5. for i = 1 to k do
6.     set sv = 0 for all v  ∈ V \ S
7.     for j = 1 to R do
8.         for all v  ∈ V \ S do
9.             sv += |R(S U {v})|
10.        endfor
11.    endfor
12.    S = S U {argmaxv  ∈ V \ S { sv /R }}
13. endfor
14 output S

In  this  paper,  we  tried  to  improve  this  static  greedy  algorithm  by 
adopting  a  memoization  approach.  In  particular,  at  time step  t,  we  have  to 
compute R(S U {v}) for each node v  ∈ V \ S. However we can notice that the 
nodes reachable from the set {S U {v}}  corresponds to the nodes reachable 
from S plus the nodes reachable from v and not already reached from S. More 



formally, let S be equal to the nodes {s1, s2, …, sn}, then:
|R(S U {v})| = | R(S) U R({v})| =

| R({s1, s2, …, sn}) U R({v})| =
| R({s1}) U R({s2}) … U … R({sn}) U R({v})|.

Hence, at each time step t, instead of computing R(S U {v}) we can use 
its decomposition and take advantage of the previous computations. Indeed, for 
each snapshot, before to start the iterative process, we can compute the sets 
R({v})  for each node of  the snapshot.  Then in  the iterative process we can 
exploit  this  sets  and  the  basic  union  operations  to  compute  the  influence 
spread.  The static  greedy algorithm exploiting memoization,  named StaticM, 
becomes:

1. initialize S = , ∅ Q = ∅
2. for i = 1 to R do
3.     generate Gi' by removing each edge (u, v) from G with probability 1-pu,v 

4. endfor
5. for i = 1 to k do
6.     set sv = 0 for all v  ∈ V \ S
7.     for j = 1 to R do
8.         for all v  ∈ V \ S do
9.             sv += | Q U R({v})|
10.        endfor
11.    endfor
12.    S = S U {argmaxv  ∈ V \ S { sv /R }}
13.    Q = Q U R({v})
13. endfor
14 output S

The set Q in the algorithm represents the set of nodes reachable from 
the best  chosen  k nodes at  the previous time step.  It  is  enlarged,  at  each 
iteration, with the nodes R({v}) for that node v such that the cardinality of R(S U 
{v}) is maximized.

4. Experimental evaluation
In  this  section  we  use  two  real  social  network  datasets,  such  as 

Epinions and Slashdot datasets available at http://http://snap.stanford.edu/data/, 
in order to evaluate the efficacy of our proposed approach improving the static 
greedy algorithm.

The Epinions dataset [Richardson et al., 2003] concerns  a  who-trust-
whom online social network of a a general consumer review site Epinions.com. 
Members  of  the  site  can  decide  whether  to  “trust”  each  other.  All  the  trust 
relationships interact and form the Web of Trust which is then combined with 
review  ratings  to  determine  which  reviews  are  shown  to  the  user.  The 
corresponding graph consists of 75879 nodes and 508837 edges.

Slashdot is a technology-related news website know for its specific user 
community. The website features user-submitted and editor-evaluated current 



primarily technology oriented news. In 2002 Slashdot introduced the Slashdot 
Zoo  feature  which  allows  users  to  tag  each  other  as  friends  or  foes.  The 
Slashdot  dataset  [Leskovec  et  al.,  2009]  network  contains  friend/foe  links 
between the users of Slashdot. The network was obtained in February 2009 
and consists of 82168 nodes and 948464  edges.

For both the datasets we used the IC model as a diffusion model and 
we set the propagation probability p to 0.5.

We  compared  the  new  StaticM  algorithm  against  the  Static  and 
Random algorithm. The Random algorithm simply selects k seed nodes among 
the possible and computes its corresponding influence spread.

Fig.1 – Time in seconds on the Epinions dataset for Random, Static and StaticM.

Fig.2 – Influence spread on the Epinions dataset for Random, Static and StaticM.



As we can see from Figure 1 StaticM requires a time lesser than that 
required by Static to compute the influence spread on the Epinions dataset. 
Random has the best performances since it just randomly picks nodes from the 
available ones. Figure 2 plots the influence spread for k ranging from 1 to 35 
obtained by the algorithms. Both Static and StaticM reach, for each k, the same 
value and both obviously find solutions better than those obtained with Random. 
Similar results are obtained on the Slashdot dataset as reported in Figure 3 and 
Figure 4.

Fig.3 – Time in seconds on the Slashdot dataset for Random, Static and StaticM.

Fig.4 – Influence spread on the Slashdot dataset for Random, Static and StaticM.



5. Conclusions
One of the main problem in social networks and viral marketing is that 

of  finding a set  of  nodes maximizing the spread of  influence. Algorithms for 
solving this problem are required to have both guaranteed accuracy and high 
scalability. The proposed greedy algorithms are able to find accurate solutions 
but fail in efficiency. In this paper we have proposed a modification of a static 
greedy algorithm by integrating a memoization technique. Experimental results 
on the Epinions and Slashdot real world datsets exploited with a prototypical 
implementation proved the validity of the proposed technique.
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