
Classifying Agent Behaviour through Relational
Sequential Patterns

Grazia Bombini, Nicola Di Mauro, Stefano Ferilli, and Floriana Esposito

University of Bari “Aldo Moro”, Department of Computer Science, 70125 Bari, Italy
{gbombini,ndm,ferilli,esposito}@di.uniba.it

Abstract. In Multi-Agent System, observing other agents and mod-
elling their behaviour represents an essential task: agents must be able to
quickly adapt to the environment and infer knowledge from other agents’
deportment. The observed data from this kind of environments are inher-
ently sequential. We present a relational model to characterise adversary
teams based on its behaviour using a set of relational sequences in or-
der to classify them. We propose to use a relational learning algorithm
to mine meaningful features as frequent patterns among the relational
sequences and use these features to construct a feature vector for each
sequence and then to compute a similarity value between sequences. The
sequence extraction and classification are implemented in the domain of
simulated robotic soccer, and experimental results are presented.

Key words: Sequence Data Mining, Sequence Classification, Relational
Sequence Similarity, Adversary Classification, Group Behaviour

1 Introduction

Sequence classification is still considered a problem rather general with appli-
cation in computer-user modelling, text categorisation, intrusion detection and
agent modelling. In Multi-Agent System (MAS), observing other agents and
modelling their behaviour (Agent Modelling) represents an essential task. The
main idea is to infer knowledge from other agents’ deportment to identify the fu-
ture behaviours of opponents in order to coordinate and cooperate with them or
counteract their actions. In multi-agent adversarial environment, the adversary
consists of a team of opponents that may interfere with the achievement of goals.
In this domains agents must be able to adapt to the environment, especially to
current opponents’ sequences of actions. Indeed, Humans usually try to predict
the behaviour of others in order to make a good decision.

The observed data from this kind of environments are inherently sequential,
and hence it is necessary to have a mechanism able to handle sequential data.
Given a set of labelled training sequences, after the learning phase, the aim of a
classifier consists in predicting the class label of an unlabelled sequence. Finding
useful features able to characterise a sequence represents the main difficulty. We
propose to use a relational learning algorithm to mine meaningful features, as

2 G. Bombini, N. Di Mauro, S. Ferilli, F. Esposito

frequent patterns, among the relational sequences useful to construct a feature
vector for each sequence and to compute a similarity value between sequences.

In this paper we consider the problem of identifying agent behaviour in com-
plex domains where it is necessary to consider enormous and possibly continuous
state and action spaces. In dynamic environments, the agents have limited time
to reason before to choose an action. In order to respond to a new situation,
an agent must be able to quickly adapt its deportment to the context. For
an effective adaptation, corresponding to adopt the most effective strategy, it is
necessary to capture the similarity between observed behaviours. Hence, a mech-
anism for distinguishing different behaviours and classifying them to recognise
different adversary classes is essential. From this point of view, a key challenge
is to determine what are the sequential behaviours characterising a team.

Our proposal is to extract from row multi-agent observations of a dynamic
and complex environment, a set of relational sequences describing an agent be-
haviour. Then, the aim is to propose a method to classify different agents us-
ing those relational sequences. In particular, this paper focuses on the tasks of
sequence classification using a logic representation for the sequences and the
extracted feature. The goal of this paper has several aspect:

– abstracting useful atomic actions (events) from the multi-agent system log
files;

– recognising relational sequences of events that characterise the behaviour of
a team;

– extracting useful feature from relational sequences;
– defining a similarity value between two feature-based sequence descriptions;
– comparing different teams’ behaviour by means classification.

2 Related work

In competitive domains, the knowledge about the opponent can be very advanta-
geous. To adapt the own team strategy, in domain such as RoboCup Simulation
League [1], it is necessary to model and classify the adversary team.

In this research area, Riley and Veloso [2] used a Bayes model to predict
opponent movement during some team matches. The learnt model is then used to
generate adaptive plans to counter the opponents strategy. In addition, Riley and
Veloso [3] modelled high-level adversarial behaviour by classifying the current
opponent team into predefined adversary classes. Their system could classify
fixed duration windows of behaviour using a set of sequence-invariant action
features. An observation occurs over a fixed length of time (i.e. a window) and
it affects the accuracy of the classifier and its performance.

Based on these works, then in [4] and [5] has been proposed a similarity-
based and a feature-based declarative opponent modelling framework in MAS.
Some features of the opponent that describe its behaviour could be extracted and
formalised. Such features could then be used to recognise an opponent model and
to identify tactical moves of the opponent. In [5] observations of the opponents
are stored as state-actions pairs into a case base, distinguishing each team. Then

Classifying Agent Behaviour through Relational Sequential Patterns 3

a similarity measures is used to determine whether a new scenario is similar to
one in the case base.

In [6], the focus is on the unsupervised autonomous learning of the sequen-
tial behaviours of agents from observations of their behaviour. The authors use
a hybrid approach to produces time-series of recognised atomic behaviours from
observations of a complex and continuous multi-variate world state. This sys-
tem is able to identify different events corresponding to the basic behaviours
of the agents using a set of models specialised on recognising simple and basic
behaviours of the agents (e.g., intercept, pass).

In [7] has been proposed a method for modelling the behaviour of individual
opponent agents based on their observed input and outputs behaviour, described
by low-level actions. Decision trees are learnt to predict the action type of a
player.

Similarly to the previous approach, in [8], a symbolic approach based on as-
sociation rule mining has been presented. The proposed method creates patterns
from dynamic scenes using the qualitative information of the environment and
the produces a set of prediction rule.

Finally, in [9] has been proposed an approach for recognising and classifying
an observed team behaviour. A set of subsequences of events represented by flat
symbols, defines a team behaviour. Trie data structures are used to store and
classify the the behaviour patterns.

The difference of our method when compared to those previous works regards
the logical representation language used to model the sequences and then the
proposal of a distance measure between agent behaviours described as logical
sequences.

3 Sequence Events Recognition

This section provides a description of the approach we use to extract relational
sequence able to describe and characterize the behaviour of a team of agents.

The Robotic Soccer Domain is one of the most interesting environment where
the agent modelling techniques has been used. The Robot World Cup Initiative1

(RoboCup) [1] is a international joint project aiming to bring together researcher
from Artificial Intelligence, Robotics and related fields. In an adversarial envi-
ronment, the predicted behaviour of other agents is referred to as an opponent
model. Soccer game is used as a central topic of research. One setting in which
opponent modelling research has been conducted is the RoboCup Simulation
league. In particular, RoboCup Simulation League 2D use Soccer Server System,
a client-server system for simulating soccer. The server keeps track of the cur-
rent state of the world, and stores all the data for a given match in a log file.
This represents a stream of consecutive raw observations representing, for each
moment of the match, soccer player’s positions, position of the ball, ball pos-
sessor, and so on. In the soccer domain, it is possible to recognise basic actions

1 http://www.robocup.org/

4 G. Bombini, N. Di Mauro, S. Ferilli, F. Esposito

such as passing, shooting to the goal, dribbling an opponent player, intercept-
ing the ball, etc. Each team may be recognised with some basic actions used to
form coordinated activities attempting to achieve the team goals. Our system
is able to recognise this basic action (high-level events) from row observations
of a stream of multi-agent behaviour. The log stream is processed to infer the
high-level events occurred during a match. The aim is to be able to classify a
team observing his actions, and hence it is necessary to consider sequences of
actions performed by players of the same team.

An event takes place when a ball possession changes or the ball is out of
bounds. The event sequence of one team is separated from the events of its
opponent team. A sequence is composed by an uninterrupted consecutive high-
level events executed by the team in question. In our work, we identify the
following high-level events:

– catch(Playern, T) : if Playern is a goalkeeper and catches the ball close to the
penalty box at time T ;

– pass(Playern, P layerm, T) :if Playern kicks the ball and Playerm gains posses-
sion, and both the players are of the same team at time T ;

– dribble(Playern, T) : if Playern moves a significant distance since an opponent
gains possession of the ball at time T ;

– intercept(Playern, T) : if Playern gains possession at time T , and the previous
ball owner belongs of the opponent team;

– shoot(Playern, T) : if Playern kicks the ball close to the penalty box of the opposite
team at time T ;

– outside(Playern, T) : if Playern kicks the ball at time T , and the ball go out of
the bounds;

– goal(Playern, T) : if the Playern kicks the ball at time T , and the ball go in the
goal.

Moreover, for each event the system takes into account some description related
to the actions and its players:

– dash(Playern, T) : if Playern at time T dashes;
– neck(Playern, T) : if Playern at time T looks around;
– turn(Playern, T) : if Playern at time T changes direction;
– kick(Playern, T) : if Playern at time T is a ball owner and kicks the ball;
– chngview(Playern, T) : if Playern at time T changes view.

For instance, given a stream of row observations about soccer player positions
and the position of the ball, the system may produce a set of sequences related
to the consecutive actions of the players of the same team until the opponent
team gains possession of the ball. For instance:

{pass(Pl1, P l2, T1), kick(Pl1, T1), neck(Pl1, T1), chngview(Pl2, T1),

dribble(Pl2, T2), dash(Pl2, T2), shoot(Pl2, T3), kick(Pl2, T3)}
The consecutive actions of players belonging to same team composes a relational
sequence. The sequence starts from a recognised action (event) for a team. For
example a typical event may be intercept(Pln, T) or pass(Pln, P lm, T). Each
successive recognised event performed by the same team belongs top the sequence
until the opposing team gains the ball possession or the ball is out of bounds.
Then the generation of a new sequence starts. Sequences generated from one

Classifying Agent Behaviour through Relational Sequential Patterns 5

action are not relevant for the classification task, since this kind of sequences are
the most frequent for all the teams. On the contrary, an interesting sequence is
composed at least from two successive actions performed by players of the same
team. Sequences represent a symbolic abstraction of the row observation. A set
of sequences is created for each team, and this set characterises the observed
teams. Separated models are learned for each team. The result of this phase
is a set of the most meaningful relational sequences of recognized events that
describes each team.

4 Relational Sequential Patterns for Agent Classification

In this section we present a method based on relational pattern mining, to extract
meaningful features able to represent relational sequences and a distance function
to measure the dissimilarity between two corresponding feature vectors. Finally,
those distances will be used in the k -nearest neighbour (k -NN) algorithm to
classify the adversary behaviour.

Logical Background: A relational sequence is represented by a set of Data-
log [10] atoms, based on a first-order alphabet consisting of a set of constants, a
set of variables, a set of function symbols, and a non-empty set of predicate sym-
bols. Each function symbol and each predicate symbol has an arity, representing
the number of arguments the function/predicate has. Constants may be viewed
as function symbols of arity 0. An atom p(t1, . . . , tn) (or atomic formula) is a
predicate symbol p of arity n applied to n terms ti (i.e., a constant symbol, a
variable symbols, or an n-ary function symbol f applied to n terms t1, t2, . . . , tn).
A ground term or atom is one that does not contain any variables. A clause is
a formula of the form ∀X1∀X2 . . . ∀Xn(L1 ∨ L2 ∨ . . . ∨ Li ∨ Li+1 ∨ . . . ∨ Lm)
where each Li is a literal and X1, X2, . . . Xn are all the variables occurring in
L1 ∨ L2 ∨ . . . Li ∨ . . . Lm. Most commonly the same clause is written as an im-
plication L1, L2, . . . Li−1 ← Li, Li+1, . . . Lm, where L1, L2, . . . Li−1 is the head
of the clause and Li, Li+1, . . . Lm is the body of the clause. Clauses, literals and
terms are said to be ground whenever they do not contain variables.

A substitution θ is defined as a set of bindings {X1 ← a1, . . . , Xn ← an}
where Xi, 1 ≤ i ≤ n is a variable and ai, 1 ≤ i ≤ n is a term. A substitution
θ is applicable to an expression e, obtaining the expression eθ, by replacing all
variables Xi with their corresponding terms ai. A conjunction A is θ-subsumed
by a conjunction B, denoted by A �θ B, if there exists a substitution θ such
that Aθ ⊆ B. A clause c1 θ-subsumes a clause c2 if and only if there exists
a substitution σ such that c1σ ⊆ c2. c1 is a generalization of c2 (and c2 a
specialization of c1) under θ-subsumption. If c1 θ-subsumes c2 then c1 |= c2.

A relational sequence is an ordered list of atoms. Given a sequence σ =
(s1s2...sm), a sequence σ′ = (s′1s

′
2...s

′
k) is a subsequence (or pattern) of the

sequence σ, indicated by σ′ v σ, if 1 ≤ k ≤ m, ∃j, 1 ≤ j ≤ m − k and a
substitution θ s.t. ∀i, 1 ≤ i ≤ k: s′iθ = sj+i. A subsequence occur in a sequence if
exists at least a mapping from elements of σ’ into the element of σ such that the

6 G. Bombini, N. Di Mauro, S. Ferilli, F. Esposito

previous condition are hold. In our case, that subsequence is a relational pattern.
The support of a sequence σ in a set of sequences S corresponds to the number
of sequences in S containing the sequence σ: support(σ)= |{σ′|σ′ ∈ S∧σ v σ′}|.

Relational Sequence Features: Before to design a classification method
based on k -Nearest Neighbour (k -NN), it is necessary to define an appropri-
ate similarity measure between sequences. The measure will be applied to data
objects represented as a set of features expressing the special properties (fea-
tures) of a sequence in a specific domain. A way to represent a sequence as a
feature vector is to use the patterns occurring in the sequence as true features.
In this section we introduced and translate the concept of k -grams and g-gapped
to the relational case.

Given an alphabet of symbols A, and let k ≥ 1 be a positive integer, then
a k-gram (k -mers) is a sequence σ of symbols over A of length k (σ ∈ Ak,
|σ| = k). For a given sequence σ = (s1s2 . . . st), the k -grams of interest are
all subsequences σ′ = (sisi+1 . . . si+k−1) of length k occurring in σ. Given a
sequence σ = (s1s2 . . . st) with |σ| = t, we define Kσ as the set of all k -grams
Ωk of σ, 1 ≤ k ≤ t:

Kσ =
t⋃

k=1

Ωk =
t⋃

k=1

{ωk1, ωk2, . . . ωknk
}

where ωki = (sisi+1 . . . si+k−1), and nk = t − k + 1. Given a set of sequences
S = {σi}ni=1, K is the set of all k -grams on all the sequences belonging to S and
represents a set of features over S, where K =

∑n
i=1 |σi|(|σi| − 1)/2.

Given an alphabet of atoms A, a relational k-gram is a relational sequence
σ of length k defined over A. Given a set of relational sequences S = {σi}ni=1,
K is the set of all relational k -grams on all the sequences belonging to S: K =⋃n
i=1Kσi where Kσi is the set of all relational k -grams over the sequence σi.

Given a sequence σ = (s1s2 . . . sn) defined over an alphabet A, a g-gapped
occurring in σ is defined as a sequence

σ′ = (sksk+1 . . . sk+ask+a+gsk+a+g+1 . . . sk+a+g+b),

where k ≥ 1 and k + a + g + b ≤ n. In particular, a g-gapped is made up of
two consecutive sub-sequences of σ separated by a gap. A gap of length 0 make
the g-gapped a k-gram where k = a + b. Given a sequence σ with |σ| = t, we
define Gσ the set of all g-gapped Ψg of σ, 1 ≤ g ≤ t − 2: Gσ =

⋃t−2
g=1 Ψg. Given

a set of sequences S = {σi}ni=1, G is the set of all g-gapped on all the sequences
belonging to S and represents a set of features over S. To use the concept of g-
gapped in a relational domain, we have introduced in the background knowledge
a relational operator followat n that represents the n-th direct successor in the
relational sequence. Fixing the value of n, ranging from 1 to a maximum given
value, it is possible to define the gap between the subsequences.

Let be A an alphabet of atoms, a relational g-gapped is a relational se-
quence β defined over A in which there is almost an atom like followat n. Gσi

Classifying Agent Behaviour through Relational Sequential Patterns 7

is the set of all relational g-gapped over the sequence belonging to S:

G =
n⋃
i=1

Gσi

where Gσi is the set of all relational g-gapped over the sequence σi. In particular,
K and G represent the set of all relational features over S. We define K(α) ⊆ K
and G(α) ⊆ G , the set of relational k -grams and g-gapped having a support
greater than α: K(α) = {σ|σ ∈ K ∧ support(σ) ≥ α} and G(α) = {σ|σ ∈
G ∧ support(σ) ≥ α}.

Mining Relational Sequential Patterns: In order to select the best set of
features, we use an Inductive Logic Programming (ILP) [11] algorithm , based on
[12], for discovering relational patterns from sequences. It is based on a level-wise
search method, known in data mining from the Apriori algorithm [13]. It takes
into account the sequences, tagged with the belonging class, and the α parameter
denoting the minimum support of the patterns. It is essentially composed by two
steps, one for generating pattern candidates and the other for evaluating their
support. The level-wise algorithm makes a breadth-first search in the lattice of
patterns ordered by a specialization relation. Starting from the most general
patterns, at each level of the lattice the algorithm generates candidates by using
the lattice structure and then evaluates the frequencies of the candidates. Since
the monotonicity of pattern frequency (if a pattern is not frequent then none of
its specializations is frequent), in this phase some patterns may be discarded.

The generation of the patterns actually present in the sequences of the
dataset, is based on a top-down approach. The algorithm starts with the most
general patterns. These initial patterns are all of length 1 and are generated by
adding an atom to the empty pattern. Then, at each step it tries to specialize
all the potential patterns, discarding those that do not occur in any sequence
and storing the ones whose length is equal to the user specified input parameter
maxsize. Furthermore, for each new refined pattern, semantically equivalent pat-
terns are detected, by using the θ-subsumption relation, and discarded. In the
specialisation phase, the specialisation operator under θ-subsumption is used.
Basically, the operator adds atoms to the pattern. Finally, the algorithm may
use a background knowledge B (a set of Datalog clauses) containing constraints
on how to explore the lattice.

Distance Function over Relational Sequences: Given a set of sequences
S, we apply the algorithm previously described [12], to find all the relational
k -grams K(α) and relational g-gapped G(α) over the set S with a support at
least equal to α. The ordered set of features F that will be used to compute the
boolean vector representation of each sequence is defined in the following way.
Given a sequence σ ∈ S, and F = {µi}ni=1 where µi ∈ K(α) ∪ G(α) represents
the set of relational k -grams and g-gapped over S, the feature vector of σ is

Vσ = (f1(σ), f2(σ), ..., fn(σ)) where fi(σ) =
{

1 if µi v σ
0 otherwise

8 G. Bombini, N. Di Mauro, S. Ferilli, F. Esposito

Now, the distance function dr(·, ·) between two relational sequences σ1 and σ2

is computed using the classical Tanimoto measure [14]:

dr1(σ1, σ2) =
n1σ1 + n1σ2 − 2n1σ12

n1σ1 + n1σ2 − n1σ12

=
2(n− n1σ12)
2n− n1σ12

(1)

where n1σi
= n = |F| is the number of the features, and n1σ12 = |{fi|fi(σ1) =

fi(σ2)}| is the number of features with the same value in both σ1 and σ2. How-
ever, this basic formulation takes into account features not appearing (with value
0) in the sequences, and in case of a lot of feature this can lead to underfitting.

Equation (1) may be extended in the following way:

dr2(σ1, σ2) =
n2σ1 + n2σ2 − 2n2σ12

n2σ1 + n2σ2 − n2σ12

=
n∑
i=1

fi(σ1) + fi(σ2)− 2fi(σ1)fi(σ2)
fi(σ1) + fi(σ2)− fi(σ1)fi(σ2)

where n2σi
=
∑n
j=1 fj(σi) is the number of the features holding in the sequence

σi, and nσ12 = |{fi|fi(σ1) = fi(σ2) = 1}| is the number of features that hold
both in σ1 and σ2.

5 Experimental results

As discussed in Section 3, in order to evaluate our approach we analyse log
files of soccer games of the RoboCup 2008 Exercise Competitions2. This is a
preceding event for RoboCup initiative, and includes a 2D simulation league. We
have implemented a system that is able to identify and extract the interesting
sequences of coordinated team behaviours using the recorded observations (logs)
of this simulation games.

There is an underlying assumption, that the strategy of a team does not
change during the competition. We have analysed the log files for 4 teams, con-
cerning to 4 matches of the competition, 2 matches for each team. One adversary
class was created for each team by analysing the log files of two matches of the
same team, producing a set of relational sequences. Each sequence is made up of
interesting uninterrupted consecutive actions performed by players of the same
team representing its characteristic behaviour. From the row observations of the
log files we have obtained the dataset. It consists of 443 sequences, defined on
7 atomic behaviours (catch, pass, dribble, etc.) and 5 action descriptions (neck,
turn, kick, etc.). In particular, we have 112 sequences for the first team C0, 106
sequence for the second team C1, 93 sequence for the third team C2 and 132
sequence for the fourth team C3.

After having created these adversary classes, the goal was to identify the
team using a sequence regarding its actions. A weighted 10-NN classifier was
constructed and tested using the 10-fold cross-validation to find the classification
accuracy. In the first step, the set K(α) of frequent k -grams has been mined.
Here, α denotes the support of each k -gram σ ∈ K(α) corresponding to the ratio
support(σ)/|S|, where S is the set of sequences in the training set for each fold. In

2 http://robocup-cn.org/en/exercise/08/

Classifying Agent Behaviour through Relational Sequential Patterns 9

Table 1. Classification accuracy using only k-grams as features and 10-fold cross-
validation.

Class F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 Mean

α = 0.25

C0 54.55 40 40 10 60 60 36.36 30 75 30 39.42
C1 70 66.67 72.73 60 22.22 10 30 60 10 30 43.16
C2 100 100 75 88.89 100 88.89 100 88.89 88.89 90 92.06
C3 66.67 76.92 53.85 84.62 84.62 100 92.31 38.46 100 85.71 78.32

α = 0.20

C0 36.36 50 40 20 50 70 72.73 40 33.33 40 42.24
C1 90 75 72.73 40 22.22 20 20 50 10 40 43.99
C2 100 100 83.33 88.89 100 88.89 100 88.89 100 90 94
C3 80 92.31 100 76.92 92.31 100 92.31 46.15 100 85.71 88.75

Table 2. Classification accuracy using k-grams and g-gapped as features and 10-fold
cross-validation.

Class F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 Mean

α = 0.25

C0 54.55 40 50 20 90 70 18.18 40 22.22 40 44.49
C1 80 58.33 81.83 60 77.778 10 40 50 20 30 50.79
C2 100 100 100 88.89 100 100 100 88.89 77.78 90 94.56
C3 73.33 76.92 76.92 69.23 69.23 100 62.62 61.54 100 85.71 80.52

α = 0.20

C0 36.36 50 30 30 50 70 72.73 70 33.33 50 49.24
C1 90 83.33 72.73 40 100 20 60 30 20 40 55.61
C2 100 90 90 88.89 100 100 88.89 77.78 88.89 80 90.44
C3 86.67 76.92 92.31 69.23 92.31 100 53.85 61.54 100 85.71 81.85

this experiment, α has been set to 0.20 and 0.25, and the algorithm extracted,
respectively, 501.4 and 315.2 k -grams on average on the 10 fold. The average
accuracy results was, respectively, 68.63 and 63.9. The results for different value
of α are shown in Table1.

In the second experiment, maintaining the same values of α, both k -grams
and g-gapped has been mined. In Table2 are reported the results, with an aver-
age accuracy results of, respectively, 69.29 and 67.76. The algorithm extracted,
respectively, 1031, 7 and 781, 8 k -grams and g-gapped on average on the 10 fold.
In all the experiments, there are 4 classes to be distinguish, and hence the ac-
curacy on guessing is 25%. Considering this guessing accuracy as a baseline we
can say that the proposed method is able to classify with a high accuracy the
teams C2 and C3 and with a sufficient accuracy the teams C0 and C1.

6 Conclusions

In multi-agent adversarial environment, the adversary consists of a team of
opponents that may interfere with the achievement of goals. In this domains
agents must be able to adapt to the environment, especially to the current op-
ponents’ sequences of actions.

In this paper we propose a relational model to represent an adversary team
based on its observed behaviour. A similarity measure and a classification ap-

10 G. Bombini, N. Di Mauro, S. Ferilli, F. Esposito

proach for relational sequences has been applied to adversary classification. Ex-
perimental results obtained on RoboCup competition are encouraging. As a
future work, we will investigate methods for extracting patterns with a high
discriminative power, and we will compare different similarity functions.

References

1. Kitano, H., Tambe, M., Stone, P., Veloso, M., Coradeschi, S., Osawa, E., Mat-
subara, H., Noda, I., Asada, M.: The robocup synthetic agent challenge 97. In:
IJCAI’97: Proceedings of the 15th international joint conference on Artifical intel-
ligence, San Francisco, CA, USA, Morgan Kaufmann Publishers Inc. (1997) 24–29

2. Riley, P., Veloso, M.: Planning for distributed execution through use of probabilistic
opponent models. (2002) 72–81

3. Riley, P., Veloso, M.M.: On behavior classification in adversarial environments. In
Parker, L.E., Bekey, G.A., Barhen, J., eds.: DARS, Springer (2000) 371–380

4. Steffens, T.: Feature-based declarative opponent-modelling. In: RoboCup. (2003)
125–136

5. Steffens, T.: Similarity-based opponent modelling using imperfect domain theories.
In: CIG. (2005)

6. Kaminka, G.A., Fidanboylu, M., Chang, A., Veloso, M.M.: Learning the sequential
coordinated behavior of teams from observations. In Kaminka, G.A., Lima, P.U.,
Rojas, R., eds.: RoboCup. Volume 2752 of Lecture Notes in Computer Science.,
Springer (2002) 111–125

7. Ledezma, A., Aler, R., Sanchis, A., Borrajo, D.: Predicting opponent actions by
observation. (2005) 286–296

8. Lattner, A.D., Miene, A., Visser, U., Herzog, O.: Sequential pattern mining for
situation and behavior prediction in simulated robotic soccer. In: RoboCup 2005:
Robot Soccer World Cup IX. (2006) 118–129

9. Iglesias, J.A., Ledezma, A., Sanchis, A., Kaminka, G.A.: Classifying efficiently the
behavior of a soccer team. In et al., W.B., ed.: Intelligent Autonomous Systems
10. IAS-10. (2008) 316–323

10. Ullman, J.: Principles of Database and Knowledge-Base Systems. Volume I. Com-
puter Science Press (1988)

11. Muggleton, S., De Raedt, L.: Inductive logic programming: Theory and methods.
Journal of Logic Programming 19/20 (1994) 629–679

12. Esposito, F., Di Mauro, N., Basile, T.M.A., Ferilli, S.: Multi-dimensional relational
sequence mining. Fundam. Inf. 89(1) (2009) 23–43

13. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast discovery
of association rules, Menlo Park, CA, USA, American Association for Artificial
Intelligence (1996) 307–328

14. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification (2nd Edition). Wiley-
Interscience (November 2000)

