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Abstract. Many clustering methods are based on flat descriptions, while
data regarding real-world domains include heterogeneous objects related
to each other in multiple ways. For instance, in the field of Multi-Agent
System, multiple agents interact with the environment and with other
agents. In this case, in order to act effectively an agent should be able
to recognise the behaviours adopted by other agents. Actions taken by
an agent are sequential, and thus its behaviour can be expressed as a
sequence of actions. Inferring knowledge about competing and/or com-
panion agents by observing their actions is very beneficial to construct a
behavioural model of the agent population. In this paper we propose a
clustering method for relational sequences able to aggregate companion
agent behaviours. The algorithm has been tested on a real world dataset
proving its validity.
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1 Introduction

Many clustering methods are based on flat descriptions, in which data points
are represented as a fixed-length attribute vector. However, datasets belonging
to real-world domains include heterogeneous objects related to each other in
multiple ways. For instance in the field of Multi-Agent System (MAS), multiple
agents (artificial or human) interact with the environment and with other agents.
From a behaviour analysis point of view, MASs are in many aspects similar to
human society. Indeed, in order to act effectively an agent should be able to
recognise the behaviours adopted by other agents. Actions taken by an agent
are sequential, and thus its behaviour can be expressed as a sequence of actions.
Each action can be related in different way with respect to other agents and to
the environment in which agents interact. Inferring knowledge about competing
and/or companion agents by observing their actions is very beneficial to con-
struct a behavioural model of the agent population. In order to reach this goal,
it is necessary to define a measure able to asses the similarity between different
behaviours described by relational sequences.

In the field of unsupervised data analysis, clustering algorithms provide a
useful methods to explore complex data structures. Clustering methods have
been exploited in many disciplines, such as data mining, document retrieval,
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image segmentation and pattern classification [1-3]. A clustering method tries
to aggregate data on the basis of a similarity (or dissimilarity) criteria, where
groups (or cluster) are defined by a set of similar objects. The two key issues
in clustering are the object representation and the design of the similarity mea-
sure. Sequence Clustering concerns grouping a set of sequences into clusters by
using a similarity criteria capturing the difference between sequences. When the
sequence are expressed in a relational language, we name the task Relational
Sequence Clustering. Sequence data can be generated from a variety of domains,
such as DNA sequencing, speech processing, customer transaction and robot
sensor analysis to name a few [4, 3].

The solution that we propose is to represent each relational sequence by a
set of features and then to exploit these features to compute a similarity value
between sequences. This solution presents two problems: (P1) how to extract
the features from relational sequences, and (P2) how to asses a similarity value
between two feature-based sequence descriptions. This paper represents, to our
knowledge, the first proposal for clustering relational sequences. In particular, we
will use a relational learning algorithm to mine meaningful features among the
relational sequences and we will use these features to construct a feature vector
for each sequence. Then we adapt the Tanimoto measure [5] to compute the sim-
ilarity between feature vectors, and finally the Partition Around Medoids (PAM)
algorithm [6] will be used to aggregate the sequences. The proposed method has
been applied to a real world problem and the results prove its validity.

2 Relational Sequences: representation and mining

In this section we present a method based on relational pattern mining, to extract
meaningful features able to represent relational sequences.

2.1 Sequence Features

Before to design a clustering method, it is necessary to define an appropriate
similarity measure between sequences. The measure will be applied to data ob-
jects represented as a set of features expressing the special properties (features)
of a sequence in a specific domain. A way to represent a sequence as a feature
vector is to use the patterns occurring in it as true features.

Given an alphabet of symbols A, and let be kK > 1 a positive integer, then
a k-gram (k-mers), is a sequence o of symbols over A of length k (o € AF,
|o| = k). For a given sequence o = ($182...5¢), the k-grams of interest are all
subsequences o’ = (8;8;11 - .. S;+kr—1) of length &k occurring in o.

Given a sequence o = ($152...5;) with |o| = ¢, we define K, as the set of all
k-grams 2 of 0, 1 < k < t:

t t
Ky = 2 = |J{wr1, wr2, - - whn, } (1)
k=1 k=1
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where wg; = (8iSi+1- .- Sitk—1), and n =t — k + 1.

Given a set of sequences S = {0}, K is the set of all k-grams on all
the sequences belonging to S: K = |J;_; K,,, where K represents the set of all
features over S.

2.2 Logical Background

A relational sequence is represented by a set of Datalog [7] atoms, based on
a first-order alphabet consisting of a set of constants, a set of variables, a set
of function symbols, and a non-empty set of predicate symbols. Each function
symbol and each predicate symbol has an arity, representing the number of
arguments the function/predicate has. Constants may be viewed as function
symbols of arity 0. An atom p(¢1,...,t,) (or atomic formula) is a predicate
symbol p of arity n applied to n terms ¢; (i.e., a constant symbol, a vari-
able symbols, or an n-ary function symbol f applied to n terms t1,%a,...,t,).
A ground term or atom is one that not contain any variables. A clause is a
formula of the form VX1VX2 N VXn(Ll V L2 V...V Zz \ Ei+1 V...V Zm)
where each L; is a literal and X7, Xo,... X, are all the variables occurring in
LiVILyV...L;V...L,. Most commonly the same clause is written as an im-
plication Ll, LQ, ce Li,1 — Li7 Li+17 “e Lm; where L17 Lg, ce Li,1 is the head
of the clause and L;, L;41,. .. Ly, is the body of the clause. Clauses, literals and
terms are said to be ground whenever they do not contain variables.

A substitution 6 is defined as a set of bindings {X; « a1,..., X, «— a,}
where X;,1 < i < n is a variable and a;,1 < i < n is a term. A substitution
0 is applicable to an expression e, obtaining the expression ef, by replacing all
variables X; with their corresponding terms a;. A conjunction A is #-subsumed
by a conjunction B, denoted by A <y B, if there exists a substitution 6 such
that A9 C B. A clause ¢ 0-subsumes a clause co if and only if there exists
a substitution o such that cio0 C ca. ¢1 is a generalization of ¢y (and ¢ a
spectalization of ¢1) under §-subsumption. If ¢; #-subsumes cp then ¢; = co.

Definition 1 (Relational (sub)sequence). A relational sequence is an or-
dered list of atoms. Given a sequence o = ($182...5m,), @ sequence o' = (8} s5...s},)
is a subsequence (or pattern) of the sequence o, indicated by o' C o, if

1. 1<k<my
2. 35,1 <j<m—k and a substitution 0 s.t. Vi,1 <i < k: s,0 = s;4,.

A subsequence occur in a sequence if exists at least a mapping from elements of
o’ into the element of o such that the previous condition are hold. In our case,
that subsequence is a relational pattern.

The support of a sequence o in a set of sequences S corresponds to the number
of sequences in S containing the sequence o: support(c)= |{o’|c’ € SAc C o’}|.
Now we can translate the concept of k-grams to the relational case.

Definition 2 (Relational k-gram). Given an alphabet of atoms A, a rela-
tional k-gram is a relational sequence o of length k defined over A.
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Given a set of relational sequences S = {o;}—, K is the set of all relational k-
grams on all the sequences belonging to S: K = |J!'_; K,,, where K, is the set of
all relational k-grams over the sequence ;. In particular, IC represents the set of
all relational features over S. We define K(«) C K, the set of relational k-grams
having a support greater than a — 1: K(a) = {c|o € K A support(c) > a}.

2.3 Mining Relational Sequential Patterns

In order to select the best set of features, we use an Inductive Logic Program-
ming (ILP) [8] algorithm , based on [9], for discovering relational patterns from
sequences. It is based on a level-wise search method, known in data mining from
the APRIORI algorithm [10]. It takes into account the sequences, tagged with
the belonging class, and the a parameter denoting the minimum support of the
patterns. It is essentially composed by two steps, one for generating pattern
candidates and the other for evaluating their support. The level-wise algorithm
makes a breadth-first search in the lattice of patterns ordered by a specialization
relation. Starting form the most general patterns, at each level of the lattice the
algorithm generates candidates by using the lattice structure and then evaluates
the frequencies of the candidates. Since the monotonicity of pattern frequency
(if a pattern is not frequent then none of its specializations is frequent), in this
phase some patterns may be discarded.

The generation of the patterns actually present in the sequences of the
dataset, is based on a top-down approach. The algorithm starts with the most
general patterns. These initial patterns are all of length 1 and are generated by
adding an atom to the empty pattern. Then, at each step it tries to specialize
all the potential patterns, discarding those that do not occur in any sequence
and storing the ones whose length is equal to the user specified input parameter
mazxsize. Furthermore, for each new refined pattern, semantically equivalent pat-
terns are detected, by using the #-subsumption relation, and discarded. In the
specialisation phase, the specialisation operator under #-subsumption is used.
Basically, the operator adds atoms to the pattern. Finally, the algorithm may
use a background knowledge B (a set of Datalog clauses) containing constraints
on how to explore the lattice.

3 Clustering Relational Sequences

Now we propose a distance function to measure the dissimilarity between two
relational sequences, and the how those distances will be used in the Partition
Around Medoids (PAM) algorithm to aggregate similar sequences.

3.1 Distance Function over Relational Sequences

A sequence distance function is a function d that maps a pair of sequences to a
non-negative real number to measure the (dis)similarity between two sequences.
A sequence distance satisfies the follow properties:



Relational Sequence Clustering for Aggregating Similar Agents 5

0 for sequence x and y such that x # y;

0 for all sequences x;

= d(y, x) for all sequences z and y;

< d(z,z) + d(z,y) for all sequences z, y and z.

v

Given a set of sequences S, we apply the algorithm previously described in
Section 2.3, and completely reported in [9], to find all the relational k-grams
K(«) over the set S with a support at least equal to . () is the ordered set
of features F that will be used to compute the boolean vector representation of
each sequence in the following way. Given a sequence o € S, and F = K(«a) =
{w;}7_, the set of relational k-grams over S, the feature vector of o is a vector

Vo = (f1(0), fa(0), ..., fn(o)) where

_Jlifw;Co
filo) = {0 otherwise
Now, the function distance d,.(-,-) between two relational sequences o1 and
o9 is computed using the classical Tanimoto measure [5]:

Ay (o1, 09) = Mgy + Moy — 2N10y, _ 2(n — Ni1gyy,) @)
T oy + Moy — Moy 21 — Nigy,

where ny,, = n = |F| is the number of the features, and ni,,, = [{fi|fi(o1) =

fi(02)}] is the number of features with the same value in both ¢; and o9. How-

ever, this basic formulation takes into account features not appearing (with value

0) in the sequences, and in case of a lot of feature this can lead to underfitting.
Equation (2) may be extended in the following way:

20, + Mgy = 2M20,, _ =~ fi(o1) + fi(o2) = 2fi(01) fi(02)
Mooy + Mooy — M2gy, = filor) + fi(o2) — fi(o1) fi(o2)

3)

dry(01,02) =

where noy, = Y, fi(0:) is the number of the features holding in the sequence
o, and ng,, = f{fi|fi(01) = fi(o2) = 1}| is the number of features that hold
both in o7 and 0.

3.2 Partition Around Medoids algorithm

Based on an appropriate objective function, a partitional clustering algorithm
obtains a single partition of n objects into a set of k clusters. To clustering the
sequences, we use the well-known k-medoids method Partition Around Medoids
(PAM) [6]. Given X = {x;}"; a set of objects, let {us}¥_, be the k cluster
representatives, named medoids, and [; be the cluster assignment of an object
xi, where [; € L and £ = 1,..., k, the goal of the the k-medoids algorithm is to
find the best clustering solution C optimizing the objective function J(C).

In order to find k clusters, PAM find a representative object u; (medoid) for
each cluster. This representative object is meant to be the most centrally located
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object for each cluster. Once the k£ medoids have been selected, each non-selected
object is grouped with the medoid to which it is the most similar. More precisely,
if x; is a non-selected object, and x; is a (selected) medoid, then x; belongs to
the cluster represented by x; if d(x;,x;) = minp=1, . kd(x;,xp), where d(x;,x;)
denotes the dissimilarity, or distance, between objects x; and x;. PAM starts
with an arbitrary selection of k& objects. Then in each step, a swap between a
selected object x; and a non-selected object x; is made, as long as such a swap
would result in an improvement of the quality of the clustering. In particular,
to calculate the effect of such a swap between x; and x5, PAM computes costs
C;p, for all non-selected objects x; . In this work we used the function reported
in Equation (3) as a similarity function in the PAM algorithm.

Tightness. Finally, the quality of the chosen medoids is measured by the aver-
age dissimilarity between a non-selected object and the medoid of its cluster, as
reported in Equation (4).

tightness(C) = % ‘ Z d(xs, us) (4)

3.3 Evaluation of clustering solution

To evaluate the goodness of a cluster solution, it is necessary to calculate an
intra-cluster similarity (how the objects within a cluster are similar) and inter-
cluster similarity (how object from different clusters are dissimilar).

Entropy. Entropy indicates how much homogeneous a cluster is. For each clus-
ter C; in the clustering result C' we compute p;; , the probability that a member
of the cluster C; belongs to class i as p;; = n;/nj where n; is the number of
objects contained in the cluster C; , and n; is the number of data objects of the
i-th class that were assigned to the cluster Cj .

The entropy of each cluster C; may be calculated using the following formula

C

c ni
E(Cy) == pijlog(pi;) = — > Llog
i=1

nZ

()

]
= T

where the sum is taken over all the ¢ classes. The entropy of the entire clustering
solution is then defined to be the sum of the individual cluster entropies weighted
according to the cluster size:
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A perfect clustering solution should be the one that leads to clusters that contain
objects from only a single class, in which case the entropy will be zero. In general,
the smaller the entropy values, the better the clustering solution is.

Purity. The purity measures the extend to which each cluster contained data
objects from primarily one class. The purity of the cluster C}; is defined to be

P(Cj) = — max(nj) (7)

which is nothing more than the fraction of the overall cluster size that the largest
class of objects assigned to that cluster represents. The overall purity of the
clustering solution C is obtained as a weighted sum of the individual cluster
purities and is given by

k

Pe) =Y P, (8)

r=1

4 Experimental results

Relational dataset. In order to validate the method we performed experi-
ments on the Greenberg data set [11]. From a behaviour analysis point of view,
MASs are in many aspects similar to human’s society. Indeed, in order to act
effectively an agent (artificially or human) should be able to recognise the be-
haviours adopted by other agents. Actions taken by an agent are sequential, and
thus its behavior can be expressed as a sequence of actions.

A Unix command sequence (session) can be seen as the sequence of actions
taken by an agent (user) at each session. The Greenberg data set consists of
168 logs of different users of the unix chs, divided into four groups: 52 computer
scientists (CS), 36 experienced programmers (EP), 55 novice programmers (NP)
and 25 non-programmers (NNP). Each Greenberg’s log file corresponding to a
user keeps track of an entire login session. Each login session is denoted by a
starting and ending time record. Each command belonging to a session, has
been annotated with the current working directory, alias substitution, history
use and error status. Furthermore, each command name may be followed by
some options and some parameters. Each session represents a sequence and a
log file is a collections of sequences.

Each shell log has been represented as a set of logical ground atoms [12] as
follows: command (e) is the predicate used to indicate that e is a command. The
command name has been used as a predicate symbol applied to e; parameter(e,p)
indicates that p is the parameter of e. The parameter name has been used as a
predicate symbol applied to p; current directory(c,d) indicates that d is the
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current directory of the command c; next_c(c1,c2) indicates that the command
c2 is the direct command successor of c1; next_p(pl,p2) indicates that the pa-
rameter p2 is the direct parameter successor of pl. For instance the following
shell log

man mklib

man -k mklib

should be translated as
command(cl). ’$man’(cl).

next_p(cl,clpl). parameter(clpl,’$mklib’). next_c(cl,c2).
command (c2) . ’$man’ (c2).

next_p(c2,c2pl). parameter(c2pl,’$-k’).

next_p(c2pl,c2p2). parameter(c2p2,’$mklib’).

Results. The results obtained by the PAM algorithm on a dataset made up
of 209 sequences extracted from 8 selected users (agents), two for each class,
defined on 153 different command names are reported in Figure 1. In particular,
we have 89 sequences for CS, 39 sequences for EP, 39 for NP and 42 for NNP.

In the first step, the set K(«) of frequent k-grams has been mined. Here,
a denotes the support of each k-gram o € K(«) corresponding to the ratio
support(c)/|S|, where S is the set of sequences to be clustered. In this experi-
ment, o has been set to 0,02, 0,03, 0,04 and 0,05, and the algorithm extracted,
respectively, 567, 153, 84 and 58 k-grams.

Even if we know the corresponding class label of each sequences we dropped
it considering all the sequences as belonging to the same dummy class. In the
second step, after having extracted the set of features, the sequences have been
clustered adopting a values of k (the number of clusters) belonging to the set
{4,6,8,10,12,14,16,18,20}. Finally, we can compute for each obtained cluster
the corresponding purity value knowing the previously dropped class label for
each sequence. Figure 1 shows the variation of the purity for all clustering solu-
tions, and the corresponding plot of the entropy and tightness values. As we can
see, good results have been obtained with large value of k, and choosing a equals
to 0,05 corresponding to the case of mining patterns with a large support.

5 Conclusions and Related Works

In [13] the authors investigate the problem of clustering sequence based on their
structural features. In order to characterise the structural properties of a given
sequence, the authors used the conditional probability distribution (CPD) of
the next symbol (right after a segment of some fixed length L). The difference
between the two CPDs corresponding to the two sequences is assumed to be
the distance between them. The similarity between two CPDs can be measured
by the variational distance or by the Kullback-Leibler divergence between the
CPDs. The CPDs are represented in a concise way by probabilistic suffix tree,
a variant of a suffix tree. The computation of a CPD can be expensive for large
L. To define the CPD only the the frequent sequences in a cluster are used. To



Relational Sequence Clustering for Aggregating Similar Agents 9

*0,02 #0,03 *+0,04 *0,05 0,02 #0,03 ¥0,04 B0,05
1,00 0,50
095 045
090 040
085 035
080 ~ 030 ~
g oms gx 0,25
= o070 § 020 A
065 5 = 015
060 0,10
055 0,05
0,50 0,00
4 6 8 10 12 14 16 18 20 4 6 8 10 12 14 16 18 20
K K
00 =0 w00t w005

10

09

08

A

07

06 e ¥

e S N

tightness
°
S

Fig. 1. Entropy (top-left), purity (top-right) and tightness (bottom) values obtained
by PAM with different number of cluster

discover clusters is designed an algorithm, it compute the distance of a sequence
for each cluster. However, the algorithm reported in [13] works on sequences of
flat symbols.

Recent advances in artificial intelligence leading to the growth of structured
data sequences and the recent interest in statistical relational learning have mo-
tivated the development of probabilistic models for relational sequences [14],
such as Logical Hidden Markov Models [15] and Relational Conditional Random
Fields [16]. These models have been applied to model the probabilistic nature of
the sequence, but they have not been never used for clustering.

In this paper we propose a similarity measure and a clustering approach
for relational sequences applied to agent behaviour aggregation. Experimental
results proved the validity of the proposed approach. As a future work, we will
investigate methods for extracting patterns with a high discriminative power,
and we will compare different similarity functions.
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