Incremental Learning from Positive Examples

Grazia Bombini, Nicola Di Mauro, Floriana Esposito, and Stefano Ferilli

Universita degli Studi di Bari, Dipartimento di Informatica, 70125 Bari, Italy
{gbombini,ndm,esposito,ferilli }@di.uniba.it

Abstract. Classical supervised learning techniques are generally based
on an inductive mechanism able to generalise a model from a set of pos-
itive examples, assuring its consistency with respect to a set of negative
examples. In case of learning from positive evidence only, the problem
of over-generalisation comes into account. This paper proposes a general
technique for incremental multi-class learning from positive examples
only, which has been embedded in the learning system INTHELEX. The
idea is to incrementally suppose the positive evidence for a class to be
a negative evidence for all other classes until the environment explicitly
declares the contrary.

An application of the proposed technique to the agent learning domain
has been provided. The proposed framework has been used to simulate
an agent learning and revising in an incremental way a logical model
of a task by imitating skilled agents. In particular, demonstrations are
incrementally received and used as training examples while the agent
interacts in a stochastic environment. The experimental results prove
the validity of the proposed approach on this application domain.

Key words: Inductive Logic Programming, Incremental Learning

1 Introduction

The goal of inductive Machine Learning systems is to discover a description of
a target concept from a set of observations provided by the expert and possibly
a background knowledge. Inductive learning can be cast as a search problem in
the space of all possible hypotheses [1]. In the supervised setting a background
knowledge and a set of positive and negative examples are exploited by the
learning system in order to find a hypothesis explaining all positive examples
and none of the negative ones. In particular, negative examples are used to bias
the search in the space of all possible hypotheses.

However, in many cases it may be necessary to learn from positive examples
only because no negative example is available, as in the case of a child learning
to speak, or when an animal or an agent learns how to act by observing and/or
by imitating other agents. In this scenario the learning system could produce an
overly general hypothesis, such as “everything is true”, due to the absence of
contradicting evidence.

This paper proposes a general technique for incremental multi-class learning
from positive examples only. The idea is to incrementally suppose the positive

2 Grazia Bombini, Nicola Di Mauro, Floriana Esposito, and Stefano Ferilli

evidence for the class ¢; to be a negative evidence for all other classes ¢; (i # j),
until the environment explicitly declares the opposite. In this paper, a first order
logic description language to express possible hypotheses is used. First-order logic
is a powerful symbolic representation language able to represents the intrinsic
relations among the domain. It is also understandable by humans.

An application of the proposed technique will be provided, where an agent
must learn and revise in an incremental way a logical representation of a task by
imitating a skilled agent. In particular, the proposed technique has been used to
learn a policy adopting a relational language to describe both the demonstrations
and the policy. The relational description language makes the adoption of the
background knowledge very simple. The agent actively interacts with the teacher
by deciding which action to execute next and requesting demonstrations.

2 Related work

From an Inductive Logic Programming (ILP) [2] point of view, one of the most
popular approaches to the problem of learning from positive examples only,
is to exploit some form of clustering, adopting symbolic generalisations in the
given representation language (as used by Kirsten and Wrobel [3]). Given some
elements of the space of all possible observations, the learner tries to generalise
over various subsets of the observed data yielding proper rules. Each subset,
known as a “cluster”, is made up of examples that are deemed near to each
other. However, this is an unsupervised batch approach that does not fit the
requirements of learning by imitation.

Other approaches to positive only learning include systems that adopt the
Bayes theorem [4], like Progol [5]. In [4] the problem has been studied in a
Bayesian framework where the distribution of the examples is assumed to be
known. The solution provided is to generate random examples of the target con-
cept by sampling the type range of each attribute, and then using these examples
as negative. After selecting the positive instance to be generalised, the most spe-
cific clause within the language constraints that entails it is constructed. In order
to find a concept description, a search in the hypothesis space of clauses that
are more general than such as most specific clause is performed. In the induc-
tion phase, a measure to evaluate how well a clause explains all the examples is
employed.

MERLIN 2.0 [6] uses Hidden Markov Models to facilitate learning from posi-
tive examples in situations where predicate invention is required, such as learning
predicates that classify or generate sequences. MERLIN induces Hidden Markov
Models from positive sequences only to determine when to invent new predicates.
Due to the use of this induction technique, incremental learning is possible.

The following systems apply a positive-only learning approach to unlabelled
data exploiting positive observations. In [7], Yu et al. proposed a technique based
on Support Vector Machines (SVM), named PEBL, to classify Web pages given
positive and unlabelled pages. This approach uses heuristics to identify unla-
belled examples that are likely to be negative and applies a standard two-class

Incremental Learning from Positive Examples 3

(positive and negative) learning method to these examples and the positive ex-
amples. Essentially their method consists of two steps: the first identifies a set of
reliable negative documents from the unlabelled set (strong negative documents)
i.e. those documents that do not contain any feature of the positive data, and the
second builds a classifier using SVMs. The number of positive examples affects
the performances of PEBL. Indeed, when the positive data is small, the results
are often very poor.

In [8] Lee and Liu defined the problem of learning from a set of positive
and unlabelled examples as a two-class learning problem with noisy negative
examples. They heuristically identify some reliable negative examples in the un-
labelled set using logistic regression. They assign weights to unlabeled examples
and use weighted logistic regression to learn the classes of “positive” and “neg-
ative”. The proportion of noise in the labeled examples can be approximated by
the proportion of noise in a random sample from the overall set of examples.
The unlabeled examples are interpreted as weighted negative examples.

3 Learning from positive examples only

The learning problem for ILP can be formally defined:

Given: A finite set of clauses B (background knowledge) and sets of clauses E*
and E~ (positive and negative ezamples).

Find: A theory X (a finite set of clauses), such that X UB is correct with respect
to ET and E~, i.e.: a) XU B is complete with respect to Et: Y UB | Et;
and, b) XU B is consistent with respect to E~: Y UB & E~.

Given the formula X U B = ET, deriving ET from X U B is deduction, and
deriving X from B and E7 is induction. In the simplest model, B is supposed
to be empty and the deductive inference rule = corresponds to -subsumption
between clauses.

Common ILP approaches produce general clauses from positive examples and
restrict their coverage by the help of negative examples. In domains where only
positive examples are available, the learning systems may not be able to learn the
concepts correctly because of the lack of restrictions induced by negative exam-
ples. Indeed, learning from positive examples only may cause over-generalisation
that leads to inconsistent resulting hypotheses. In a multiple concept learning
setting, given a positive example for a class, it is possible to exploit the other
classes to assume negative examples. In particular, the given example is regarded
as negative for the other classes.

Incremental learning is necessary when incomplete information is available
at the time of initial theory generation. The learned theory is checked to be valid
on any new available example. In case of failure, a revision process is activated
on it in order to restore the completeness and the consistency properties. When
a positive example which is inconsistent with the hypothesis biased drawn from
previous negative examples is processed, all such negative examples are excluded
from the learning process. When a candidate negative example is considered, the

4 Grazia Bombini, Nicola Di Mauro, Floriana Esposito, and Stefano Ferilli

Algorithm 1 IIL
1: errors < 0

2: T 0

3 M—10

4: loop
5. (c,e) < get a new positive example
6: N «— {(—ci,e)|c; € C\ {c}}

7. s« classify(e,T)
8.

: if s # c then
9: errors+-+
10: for allm € M do
11: if m is negative for the class ¢ with the same body as e then
12: M — M\ {m}
13: generalize(T', ¢ «— e, M)

14: M — MU{c—e}
15: for all ¢; € N do

16: if M does not contain the positive example ¢; <— e then
17: if s = ¢; then

18: errors++

19: specialize(T, =¢; «— e, M)

20: M — MU{c; — e}

system checks whether a previous positive example has already been processed
for the same class. Hence, it is necessary that the system is capable of taking into
account the examples in an incremental way and learn simultaneously several
concepts, possibly related to each other.

Algorithm 1 reports the tuning procedure to refine the current theory. M
represents the set of all positive and negative examples already processed, F
is the current example to be examined, and T is the theory learned from the
examples in M which are incrementally provided by an expert. It starts with
an empty theory and an empty historical memory. Whenever a new example
is taken into account, it is also stored in the historical memory. The training
examples are exploited by the system to modify incorrect hypotheses according
to a data-driven strategy.

Each evidence e belongs to a specific learning class ¢. When a positive exam-
ple E ={c, e} is provided to the learning system, it is considered as a negative
example for all the other classes ¢; € C' with ¢; # ¢ that must be learned. IV
represents the set of negative examples assumed. For each positive example, the
system verifies the soundness of T trying to classify it using the learned model.
If there is a misclassification, a theory revision is needed and all the negative
examples for class ¢ having the same description of e are excluded from historical
memory.

A generalisation process on the current theory produces a revised theory
obtained in one of the following ways:

Incremental Learning from Positive Examples 5

1. generalise one of the definitions pertaining to the theory that relate to the
concept of the example, by removing conditions. This must be done by en-
suring that the revised theory covers the new example and is consistent with
the all negative examples previous examined;

2. add a new definition to the theory to explain the example;

3. add the example as a positive exception.

All the candidate negative examples (—¢;,e) € N for which a positive exam-
ple c; « e has already been processed are ignored. Indeed, since that evidence
was already taken into account as positive in the learning process, it can not be
assumed as a negative example for c;.

When a negative example is covered, a specialization process outputs a re-
vised theory by performing one of the following actions:

1. add positive conditions to each definition that explains the example. These
conditions must be able to characterize all positive examples already consid-
ered and exclude the current negative example;

2. add a negative condition to the faulty definitions to differentiate the current
negative example from positive examples previously considered;

3. add the negative example as an negative exception.

In case of concepts that have many positive examples and few negative ones
that distinguish them, the system learns different definitions. The negative ex-
amples are used for specialise the definitions that apply to specific cases. At the
end of the learning process, T represents the learned model.

In order to explain the general procedure previously described, we present
two simple examples belonging the blocks world domain. This domain consists of
4 blocks (a, b, ¢ and d), where blocks can be on the floor (denoted by f) or can be
stacked on each other. Predicate on(X,Y’) denotes that block X is on block Y,
and that X and Y belong to the same stack. In this domain, the available actions
are of the kind move(X,Y), with X € a,b,¢c,d and Y € a,b,c,d, f, X #Y, to
be interpreted as the action to put X on Y. Predicate block(X) means that
X represents a block, clear(X) means that X is clear, floor(X) means that
X represents the floor. Predicate goal-on(X,Y) means that the goal is achieve
when block X is on block Y.

The following set of literals represents a possible state in this domain:
{goal_on(a, b), clear(c), on(c, a), on(a, f), on(d, b), clear(d), on(b, f), block(a),
block(b), block(c), block(d), floor(f)}

In this state, it is correct to move both block ¢ and block d on the floor to
achieve the goal. If the positive example move(c, f) with the previous observation
is presented to the system, it adds the following definition to the theory to explain
the example: move(A,B) :- clear(A), block(A), floor(B), on(D, B), block(D),
goal_on(D,E), block(E), on(F,E), clear(F), block(F), on(E,B), on(A,D).

Then the system assumes not(move(c,d)), not(move(d,c)), not(move(d,f))
as negative examples with the same evidence as the positive example. These

6 Grazia Bombini, Nicola Di Mauro, Floriana Esposito, and Stefano Ferilli

examples are not explained by the currently learned theory and thus is not
necessary to specialise it.

Further examples concerning the same state may be presented to the system.
In particular, a possible positive example is move(d, f) with the evidence previ-
ously considered. In this case, the system assumes not(move(c,d)), not(move(d,c)),
not(move(c,f)) as negative examples.

When the system takes into account a positive example, is necessary to check
whether a previous negative example (in this case not(move(d,f))) was previously
processed and stored in the historical memory, in which case it must be removed.

Then the positive example is processed, and in this case a generalisation pro-
cess is necessary on the learned clause. The negative examples not(move(c,d)),
not(move(d,c)) are not covered by the theory previously generalised, and there-
fore there is no need of further processing to revise the learned theory.

When the system takes into account the negative example not(move(c, f)),
in the historical memory the corresponding positive example with the same ev-
idence is found, and then the negative example is not processed.

The only clause learned from these few examples results: move(A, B) :-
clear(A), block(A), floor(B), on(D, B), block(D), on(E, B), block(E), on(F, E),
clear(F), block(F), on(A, D).

4 INTHELEX

The proposed algorithm , was integrated into INTHELEX (INcremental THeory
Learner from EXample) [9], an incremental learning system for the induction
of first-order logic theories from positive and negative examples. It can learn
simultaneously several concepts, possibly related to each other. The approach
used by this system may be defined as “multistrategic” since it combines different
forms of reasoning in the same symbolic paradigm. It learns theories in form of
sets of Datalog clauses, interpreted according to the Object Identity (OI for
short) [10] assumption. Under the OI assumption, within a clause, terms (even
variables) denoted with different symbols must be distinct.

INTHELEX is a fully and inherently incremental learning system. The learn-
ing phase can start by taking as input a previously generated version of the
theory or an empty theory (from the first available example). When the theory
is incorrect wrt an example, this is rejected and a process of theory revision
starts. Algorithm 2 reports the general tuning procedure used in INTHELEX
for refining the theory to be learned. INTHELEX uses two inductive refinement
operators, one for generalising definitions that reject positive examples (com-
pleteness), and the other for specialising definitions that explain negative exam-
ples (consistency). In order to perform its task, the system exploits a previous
theory (if any) and a historical memory of all the past (positive and negative)
examples that led to the current theory.

The system can be provided with a background knowledge (i.e. some par-
tial concept definitions know to be correct about the domain and hence not
modifiable) in the same format as a theory rules.

Incremental Learning from Positive Examples 7

Algorithm 2 tuning(E,T,M)
Input: E: example; T: theory; M: historical memory;
1: Add E to M

2: if F is a positive example not covered from T then
3: generalize(T, E, M)

4: else
5: if E is a negative example covered by T then
6: specialize(T, E, M)

5 Sample application: Learning from demonstration

Learning from demonstration or learning by imitation [11,12] represents a promis-
ing approach in the area of human-robot interaction. Recent research in other
fields considers the imitative learning as an essential part of human develop-
ment [13]. Indeed, humans and animals use imitation as a mechanism for acquir-
ing knowledge. Imitation-based learning [14] and learning by demonstration [15]
are exploited to enable an unskilled agent, the observer, to learn tasks by simply
observing performances of a skilled agent, the teacher [16,17]. This approach
can be viewed as a collaborative learning based on the interaction between the
human and the agent. The agent gathers information about the task in the
form of perceptual inputs and action results, and estimates the latent control
policy of the demonstrator. The estimated policy can then be used to control
the agent’s autonomous behaviour. As reported in [18], this method can reduce
learning time when compared to classical exploration-based methods such as
reinforcement learning (RL) [17].

Learning from demonstration is strongly related to supervised learning where
the goal is to learn a policy given a fixed set of labelled data [19]. From this
point of view it is possible to collect the interactions between the teacher and
the observer and to use them as learning examples. Furthermore, data should be
gathered in an incremental way by minimising the number of required labelled
data useful to learn the given policy.

In the scenario of an agent acting in a stochastic world, the correct actions of
the agent may be considered as positive examples in a supervised learning task.

Here, we assume that an agent A aims at learning how to act in an environ-
ment by imitating an ezpert agent E. The environment in witch the agent acts is
defined by a finite set of states S. For each state s € S, the agent has available a
finite set of actions A(s) C A which cause stochastic state transition. In partic-
ular, an action a € A(s) causes a transition to state s, when executed in state s,
where A is the set of all primitive actions. Given a goal, each training example
e = {a,0} belongs to a specific learning class based on the action a. For each
class a theory must be learned in order to be able to predict the corresponding
action on unseen observations.

Hence, each action taken from E in a given state may be considered as a
positive example. Given an action-state pair (a,s) and a set A(s) of possible
actions that can be taken in state s, all other actions in A(s) \ a are assumed to

8 Grazia Bombini, Nicola Di Mauro, Floriana Esposito, and Stefano Ferilli

be negative examples until the expert agent actually takes any of them in the
same state s. Actions represent the target concepts, and the state represent the
evidence. At the end of the learning process, the learned theory T represents the
optimal policy.

The agent is assumed to observe a demonstrator that performs the correct
sequence of actions useful to reach a given goal by starting from an initial state
of the environment. During each training sequence, the agent records the obser-
vation about the environment and the corresponding action performed by the
demonstrator. An observation o € S is represented as a set of ground Datalog
literals. Each training example, e = {a, 0}, consists of an action a € A selected
by the demonstrator and an observation o € S. Obviously, we assume that the
demonstrator uses a good policy m to achieve the goal. Hence, the aim of the
agent is to learn such as hidden policy 7 : S — A mapping states (observations)
to actions.

In case of imitative learning, given a state s, if the teacher takes the action
a; € A(s), then the observer can assume that a; is a positive example and all
other actions a; € A(s) 1 < j # ¢ < |A| are negative ones. A negative example
a; for the state s is considered reliable until the demonstrator performs a; in
s. Furthermore, the process of imitative learning is naturally modeled by an
agent able to modify its theory in an incremental way, where each new incoming
example may give rise a theory revision process. We represent the policy as a
set of logical clauses where the head of the clause represents the action while the
body represents the state. In particular, a clause represents an action that may
be performed in a given state.

The proposed learning framework has been applied to a pursuit domain, gen-
erally used in the field of agent learning. The experiment regards the problem
of learning a policy in a domain where a predator should capture a prey. This
stochastic environment consists of a 4x4 grid surrounded by a wall, with a preda-
tor and a prey inside. We assume that the predator has caught the prey if the
prey lies on the same square as the predator at the end of its move. The prey
moves at random, while the predator follows a good user-defined strategy in order
to capture the prey. Both the predator and the prey can move in four directions
(north, east, south and west). The action of an agent consists in moving to the
square immediately adjacent in the selected direction. In case the target square
is a wall, the agent stays in the same square. The two agents move alternate
turns.

An observation is made up of the agent’s perception about the squares sur-
rounding it in the four directions and the square under it. The state of each
square may be empty, wall or agent. Starting from an initial state, once captured
the prey the sequence of observations does not restart by placing agents in ran-
dom positions, but it continues from the positions of catch. For example, a preda-
tor agent having a wall to the west and the prey to the east, the observation is
represented by the following set of literals: {observation(a, d1,), observation(a,
d2, e), observation(a, d3, p), observation(a, d4, w), under(a, €), direction(d1,
named1), direction(d2, named2), direction(d3, named3), direction(d4, nameds),

Incremental Learning from Positive Examples 9

L Ji®

w | e | p

Fig. 1. A sample predator prey domain. The black circle represents the predator and
the gray circle represents the prey. The figure on the right represents the predator
agent percept.

e

Number of emors

o
MW A0 W 40 W0 W0 70 a0 w0 00 w0 A0 100 o m W W 40 W B0 W 0 S0 w0
Number of example Eample

Fig. 2. Errors during the learning phase. The figure on the right represents the predic-
tion accuracy (%) over the entire historical memory for each theory revision.

north(namedl), south(named2), east(named3), west(nameds), prey(p), preda-
tor(a), wall(w), empty(e)} where a stays for predator agent, p for prey agent,
e for empty, and w for wall.

After fixing the strategy to capture the prey, we simulated a scenario in which
a predator instructs another agent to capture the prey with a minimum number
of steps. Hence, given an observation, the action taken from the predator repre-
sents a positive training example, while all other possible actions are supposed
to be negative examples.

We have generated 10 sequences of observations. Each sequence, contain-
ing traces of prey’s captures, is made up of 322,5 positive and 967,5 negative
observation-action pairs on average.

A first experiment has been performed on the whole dataset without pro-
viding the system with any background knowledge. Over all the 10 sequences
the system learned a theory (policy) made up of 9,4 clauses, obtained by 14,8
generalisations and 2,2 specialisations (26,4 errors) on average. Each clause is
composed of 13.5 literals on average. The system needs 0.325 seconds per exam-
ple to learn the correct policy.

In order to evaluate the behaviour of the learning process, we generated a
sequence made up of 1332 observation-action pairs.

Figure 2, reports on the left, the number of errors (a generalisation or a
specialisation request) the agent made during the learning phase. As we can
see, the number of errors grows until the system learns the correct policy (i.e.,
the learned classification theory). Figure 2, on the right, reports the evolution

10 Grazia Bombini, Nicola Di Mauro, Floriana Esposito, and Stefano Ferilli

Number of errors

Fig. 3. On the left: errors during the learning phase. On the right: prediction accuracy
(%) over the entire historical memory at each revision theory with the use background
knowledge.

of prediction accuracy of the policy, learnt by the agent during the imitation
process.

An example of learned rule is {move(A, B) :- predator(A), direction(B, D),
direction(F, H), observation(A, I, J), observation(A, B, E), observation(A, F,
G), south(H), north(D), wall(E), prey(G), empty(J), under(A, J).}

where a predator A moves toward north when at south there is the prey and
at north there is a wall.

Another experiment has been performed with the system provided with a
background knowledge containing several rules defining the concept of “next
direction”. An example is {next(A,B):- north(A), east(B).}. This rule denotes
that north direction followed by the east direction. The learned theory abstracts
the concept of direction. An example of learned rule is

{move(A, B) :- predator(A), direction(B, D), direction(G, F), next(D, H),
next(H, F), next(F, E), next(E, D), observation(A, B, I), observation(A, G, K),
wall(1), under(A, J), empty(J), prey(K). }

where predator A moves in direction D when it observes that in D there is
a wall and opposite there is the prey K at any edge of the grid (D may be any
of the four direction). This action applies to four different states.

On the same 10 sequences of the previous experiment, the system learned
a theory made up of 6,4 clauses, obtained by 12,1 generalisations and 3,5 spe-
cialisations (22 errors) on average. Each clause is composed of 15.3 literals on
average. The system needs 0.337 seconds per example to learn the correct policy.
In order to evaluate the behavior of the learning process with the use of a back-
ground knowledge, we generated a sequence made up of 1276 observation-action
pairs.

Figure 3 reports the number of errors (a generalization or a specialization
request) the agent made during the learning phase and prediction accuracy of
the policy.

It is interesting to note that the theory learned with the help of a background
knowledge does not exploit specific directions, but rather the relationships be-
tween them. This allows an abstraction on states. Indeed, the policy learned
tours out to be more compact (a lower number of clauses on average compared
with the first experiment), where each clause is applicable to a subset of states.

Incremental Learning from Positive Examples 11

6 Conclusion

In domains where only positive example are available, a classical supervised
learning system may not be able to learn the concepts correctly because the lack
restrictions induced by negative examples. Indeed, negative examples are used to
bias the search in the space of all possible hypotheses. In this case, the problem
of over-generalisation comes into account.

A general technique for incremental multi-class learning from positive ex-
amples only has been presented. The problem of over-generalisation has been
avoided assuming as negative examples the positive example for the other classes,
until the environment does not explicitly declare the contrary.

The proposed technique has been implemented and tested on a dataset be-
longing to the field of agent learning from demonstration. The proposed frame-
work allows to quickly, accurately and incrementally train an unskilled agent to
imitate a (human or artificial) demonstrator. The results confirm the validity of
the technique.

Acknowledgements

This work is partially funded by Italian Ministry of University and Scientific
Research FAR Project MBLab “The Molecular Biodiversity Laboratory”.

References

1. Mitchell, T.M.: Generalization as search. Artif. Intell. 18(2) (1982) 203-226

2. Lavrac, N., Dzeroski, S.: Inductive Logic Programming: Techniques and Applica-
tions. Ellis Horwood, New York (1994)

3. Kirsten, M., Wrobel, S.: Relational distance-based clustering. In: ILP. (1998)
261-270

4. Muggleton, S.: Learning from positive data. In: Inductive Logic Programming
Workshop. (1996) 358-376

5. Muggleton, S.: Inverse entailment and progol. New Generation Comput. 13(3&4)
(1995) 245-286

6. Bostrom, H.: Predicate invention and learning from positive examples only. In:
ECML. (1998) 226-237

7. Yu, H., Han, J., Chang, K.C.C.: Pebl: positive example based learning for web
page classification using svm. In: KDD. (2002) 239-248

8. Lee, W.S., Liu, B.: Learning with positive and unlabeled examples using weighted
logistic regression. In: Proceedings of the Twentieth International Conference on
Machine Learning (ICML). (2003)

9. Esposito, F., Ferilli, S., Fanizzi, N., Basile, T., Di Mauro, N.: Incremental learning
and concept drift in inthelex. Intelligent Data Analysis Journal, Special Issue on
Incremental Learning Systems Capable of Dealing with Concept Drift 8(3) (2004)
213-237

10. Semeraro, G., Esposito, F., Malerba, D.: Ideal refinement of datalog programs. In
Proietti, M., ed.: Logic Program Synthesis and Transformation. Volume 1048 of
LNCS., Springer (1996) 120-136

12

11.

12.

13.

14.

15.

16.

17.

18.

19.

Grazia Bombini, Nicola Di Mauro, Floriana Esposito, and Stefano Ferilli

Billard, A., Siegwart, R.: Robot learning from demonstration. Robotics and Au-
tonomous Systems 47(2-3) (2004) 65-67

Schaal, S., Ijspeert, A., Billard, A.: Computational approaches to motor learning
by imitation. Philosophical Transactions: Biological Sciences 358(1431) (2003)
537-547

Meltzoff, A.: The ”like me” framework for recognizing and becoming an intentional
agent. Acta Psychologica 124(1) (2007) 26-43

Schaal, S.: Is imitation learning the route to humanoid robots? Trends in cognitive
sciences 3(6) (1999) 233-242

Nicolescu, M., Mataric, M.: Natural methods for robot task learning: instructive
demonstrations, generalization and practice. In: Proceedings of the second in-
ternational joint conference on Autonomous agents and multiagent systems (AA-
MAS03), ACM (2003) 241-248

Atkeson, C., Schaal, S.: Robot learning from demonstration. In Fisher, D., ed.:
Proceedings of the 14th International Conference on Machine Learning (ICML).
(1997) 1220

Smart, W., Kaelbling, L.: Effective reinforcement learning for mobile robots. In:
IEEE International Conference on Robotics and Automation (ICRA). Volume 4.
(2002) 3404-3410

Chernova, S., Veloso, M.: Confidence-based policy learning from demonstration
using gaussian mixture models. In: AAMAS ’07: Proceedings of the 6th interna-
tional joint conference on Autonomous agents and multiagent systems, New York,
NY, USA, ACM (2007) 1-8

Bentivegna, D., Atkeson, C., Cheng, G.: Learning from observation and prac-
tice using primitives. In: AAAT Fall Symposium Series, ‘Symposium on Real-life
Reinforcement Learning’. (2004)

