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Abstract. Imitative learning can be considered an essential task of hu-
mans development. People use instructions and demonstrations provided
by other human experts to acquire knowledge. In order to make an
agent capable of learning through demonstrations, we propose a rela-
tional framework for learning by imitation. Demonstrations and domain
specific knowledge are compactly represented by a logical language able
to express complex relational processes. The agent interacts in a stochas-
tic environment and incrementally receives demonstrations. It actively
interacts with the human by deciding the next action to execute and
requesting demonstration from the expert based on the current learned
policy. The framework has been implemented and validated with exper-
iments in simulated agent domains.
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1 Introduction

Learning from demonstration or learning by imitation [1, 2], represents a promis-
ing approach in the area of human-robot interaction. Recent research in other
fields define the imitative learning as an essential part of human development [3].
Indeed, humans and animals use imitation as a mechanism for acquiring knowl-
edge. Imitation-based learning [4] and learning by demonstration [5] are exploited
to enable an unskilled agent, the observer, to learn tasks by simply observing
performances of a skilled agent, the teacher [6, 7]. This approach can be viewed
as a collaborative learning based on the interaction between the human and the
agent. The agent gathers information about the task in the form of perceptual
inputs and action results and estimates the latent control policy of the demon-
strator. The estimated policy can then be used to control the agent’s autonomous
behaviour. As reported in [8], this method can reduce the learning time when
compared to classical exploration-based methods such as reinforcement learning
(RL) [7].

The goal of this paper is to provide a relational framework allowing an agent
to learn and revise in an incremental way a logical representation of a task by
imitating a skilled agent. In particular, we propose an incremental policy learning
approach based on a relational language used to describe both the demonstration
examples and the learnt policy. The agent actively interacts with the teacher by
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deciding the next action to execute and requesting demonstration. Furthermore,
due to the relational description language, it is very simple to use background
knowledge about the domain.

Learning from demonstration is strongly related to supervised learning where
the goal is to learn a policy given a fixed set of labelled data [9]. From this point
of view it is possible to collect the interactions between the teacher and the
observer and using them as learning examples. Furthermore, data should be
gathered in an incremental way by minimising the number of required labelled
data useful to learn the given policy.

When we adopt a Reinforcement Learning (RL) approach, an agent in a
certain state receives a rewards (positive or negative) regarding the goodness of
the taken action. The agent’s goal is to learn a function (policy) that maps the
state of the world to the action that maximise the overall expected reward. A
stochastic environment may require a lot of states needing the agent to take a
large number of actions before to learn a good policy. In [10] has been presented
a RL framework in which an agent learns observing the actions of other agents
(Implicit Imitation) without requiring no explicit teacher. This increases the
speed of policy learning, but requiring the knowledge or the ability to infer
explicit state rewards, that are not always known or easy to infer. In [11] has
been investigated how RL can profit from data acquired by demonstrations in
the task of pole balancing.

In [12] the authors presented a model to find the intended goal of a demon-
stration using iterative interactions. They infer the goal of a demonstration with-
out imitating the steps on how to reach the goal by using some psychological
observations reported in [13]. The same psychological observations are taken into
account in [14] where agents learn new goals and how to achieve the goals. In [15]
the agent’s behaviour is predicted using a probabilistic distribution of the envi-
ronment. In [16] has been proposed a framework for imitative learning that uses
a probabilistic graphical model to describes a imitative process. In [8] has been
used a demonstration based learning algorithm (confident execution framework)
allowing an agent to learn a policy from demonstrations on how to execute ac-
tions. A supervised learning approach is used to learn a policy represented by a
Gaussian model. All these approaches still do not use a relational representation
formalism able to generalise the learned policies.

2 Logical background

Here we briefly review the used representation language for the domain and in-
duced knowledge. For a more comprehensive introduction to logic programming
and Inductive Logic Programming (ILP) we refer the reader to [17].

A first-order alphabet consists of a set of constants, a set of variables, a set
of function symbols, and a non-empty set of predicate symbols. Each function
symbol and each predicate symbol has a natural number (its arity) assigned to
it. The arity assigned to a function symbol represents the number of arguments
the function has. Constants may be viewed as function symbols of arity 0. A
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term is a constant symbol, a variable symbols, or an n-ary function symbol f
applied to n terms t1, t2, . . . , tn.

An atom p(t1, . . . , tn) (or atomic formula) is a predicate symbol p of ar-
ity n applied to n terms ti. Both l and its negation l are said to be literals
(resp. positive and negative literal) whenever l is an atomic formula. A clause
is a formula of the form ∀X1∀X2 . . . ∀Xn(L1 ∨ L2 ∨ . . . ∨ Li ∨ Li+1 ∨ . . . ∨ Lm)
where each Li is a literal and X1, X2, . . . Xn are all the variables occurring in
L1 ∨ L2 ∨ . . . Li ∨ . . . Lm. Most commonly the same clause is written as an im-
plication L1, L2, . . . Li−1 ← Li, Li+1, . . . Lm, where L1, L2, . . . Li−1 is the head
of the clause and Li, Li+1, . . . Lm is the body of the clause. Clauses, literals and
terms are said to be ground whenever they do not contain variables. A Horn
clause is a clause which contains at most one positive literal. A Datalog clause is
a clause with no function symbols of non-zero arity; only variables and constants
can be used as predicate arguments.

A substitution θ is defined as a set of bindings {X1 ← a1, . . . , Xn ← an}
where Xi, 1 ≤ i ≤ n is a variable and ai, 1 ≤ i ≤ n is a term. A substitution
θ is applicable to an expression e, obtaining the expression eθ, by replacing all
variables Xi with their corresponding terms ai.

The learning problem for ILP can be formally defined:

Given: A finite set of clauses B (background knowledge) and sets of clauses E+

and E− (positive and negative examples).
Find: A theory Σ (a finite set of clauses), such that Σ∪B is correct with respect

to E+ and E−, i.e.: a) Σ ∪ B is complete with respect to E+: Σ ∪ B |= E+;
and, b) Σ ∪ B is consistent with respect to E−: Σ ∪ B 6|= E−.

Given the formula Σ ∪ B |= E+, deriving E+ from Σ ∪ B is deduction, and
deriving Σ from B and E+ is induction. In the simplest model, B is supposed
to be empty and the deductive inference rule |= corresponds to θ-subsumption
between clauses. In particular, a clause c1 θ-subsumes a clause c2 if and only if
there exists a substitution σ such that c1σ ⊆ c2. c1 is a generalization of c2 (and
c2 a specialization of c1) under θ-subsumption. If c1 θ-subsumes c2 then c1 |= c2.

3 Learning from demonstration

Here, we assume that the environment is defined by a finite set of states S.
For each state s ∈ S, the agent has available a finite set of actions A(s) ⊆ A
which cause stochastic state transition. In particular, an action a ∈ A(s) causes
a transition to the state s′a when executed in the state s, where A is the set of
all the primitive actions.

The agent is assumed to observe a demonstrator that performs the correct
sequence of actions useful to reach a given goal by starting from an initial state
of the environment. During each training sequence, the agent records the obser-
vation about the environment and the corresponding action performed by the
demonstrator. An observation o ∈ S is represented by a set of ground Datalog
literals.
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Example 1. The following set of literals represents an observation of the pursuit
domain consisting of two agent, prey and predator, moving in a 4x4 grid. The
literal observation(A, D, O), denotes that an agent A percepts the observation
O in direction D.
{ observation(a, d1, e), observation(a, d2, p), observation(a, d3, e), obser-

vation(a, d4, e), direction(d1, named1), direction(d2, named2), direction(d3,
named3), direction(d4, named4), north(named1), south(named2), east(named3),
west(named4), under(a, e), prey(p), predator(a), wall(w), empty(e) } .

In this domain, the available actions that can be performed by the demon-
strator are move(X,Y) , with X ∈ {p, a} and Y ∈ {d1, d2, d3, d4} (directions
that an agent can take corresponding to the cardinal directions).

Each training example, e = {a, o}, consists of an action a ∈ A selected by
the demonstrator and an observation o ∈ S. Obviously, we assume that the
demonstrator uses a good policy π to achieve the goal. Hence, the aim of the
agent is to learn this hidden policy π : S → A mapping states (observations) to
actions.

Classical supervised learning is based on an inductive learning method able
to generalize from positive and negative examples labeled by the user. In case
of imitative learning, the action taken by the teacher agent may be considered
as positive example and all the other possible actions as negative examples. In
particular, given a state s, if the teacher takes the action ai ∈ A(s), then the
observer can assume that ai is a positive example and all the other actions
aj ∈ A(s) 1 ≤ j 6= i ≤ |A| as negative ones. A negative example aj is considerate
reliable until the demonstrator performs aj in a state s. Furthermore, the process
of imitative learning is naturally modeled by an agent able to modify its theory
in an incremental way, where each new incoming example may give rise a theory
revision process. We represent the policy as a set of logical clauses where the
head of the clause represent the action while the body represents the state. In
particular, a clause represents an action that may be performed in a given state.

Example 2. In the pursuit domain a learned rule may be the following:
{ move(A, B) :- predator(A), direction(B, D), north(D), observation(A, B,

E), wall(E), observation(A, F, G), direction(F, H), south(H), prey(G), observa-
tion(A, I, J), direction(I, K), east(K), empty(J), under(A, J) }

In this example, moving towards direction north is a good choice for the
predator. Indeed, there are more chances to cough the prey remaining in the
same square.

4 Relational Incremental Learning

INTHELEX (INcremental THeory Learner from EXample) [18] is an incremen-
tal learning system for the induction of first-order logic theory from positive
and negative examples. The approach used by this system may be defined a
multistrategy one since the system realizes the combination of different forms
of reasoning in the same symbolic paradigm. It learns theory in form of sets of
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Datalog clauses, interpreted according the Object Identity (OI for short) [19]
assumption. Under the OI assumption, within a clause, terms (even variables)
denoted with different symbols must be distinct.

INTHELEX is a learning system fully and inherently incremental. The learn-
ing phase can start by taking in input a previously generated version of the theory
or from an empty theory and from the first available example. When the theory
is not correct compared with an example, this is rejected and a process of theory
revision starts. It can learn simultaneously several concepts, possibly related to
each other. It uses a full memory storage strategy, and therefore retains all the
available example.

INTHELEX use two inductive refinement operator, one for generalising defi-
nitions that reject positive examples (completeness), and the other for specialis-
ing definitions that explain negative examples (consistency). In order to perform
its task, the system exploits a previous theory (if any) and a historical memory
of all the past (positive and negative) examples that led to the current theory.

Algorithm 1 reports the tuning procedure used in INTHELEX for refining the
theory to be learned. M represents the set of all positive and negative examples
already processed, E is the current example to be examined, and T is the theory
learned from the examples in M . In particular, a set of examples of the concepts
to be learned is incrementally provided by an expert. Whenever a new example
is taken into account, it is also stored in the historical memory. The training
examples are exploited by the system to modify incorrect hypotheses according
to a data-driven strategy. In particular, when a positive example is not covered
by the theory, a generalization process produces a revised theory obtained in one
of the following way:

1. generalize one of the definitions pertaining to the theory that relate to the
concept on the example, by removing some conditions. That ensures the
revised theory covers the new example and is consistent with the all negative
examples previous examined;

2. add a new definition to the theory to explain the example;
3. add the example as a positive exception.

When a negative example is covered, a specialization process outputs a re-
vised theory by performing one of the following actions:

1. add some conditions to one of the definitions that explains the example.
These conditions must be able to characterize all positive example already
considered and exclude the current negative example;

2. add a negative condition to one of the definitions to differentiate the current
negative example by positive examples previously considered;

3. add the negative example as an negative exception.

The system can be provided with a background knowledge (i.e. some par-
tial concept definitions know to be correct about the domain and hence not
modifiable in the same format of a theory rule).

In the scenario of an agent acting in a stochastic world, the correct actions
of the agent may be considered as positive examples in a supervised learning
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Algorithm 1 tuning(E,T,M)
Input: E: example; T : theory; M : historical memory;
1: Add E to M
2: if E is a positive example not covered from T then
3: generalize(T , E, M)
4: else
5: if E is a negative example covered by T then
6: specialize(T , E, M)

task. In our framework we assume that an agent A aims to learn how to act
in a world by imitating an expert agent E. Hence, each action taken from E in
a given state may be considered as a positive example. All the other possible
actions in the same state should be considered as negative examples. In this way
A assumes that E acts in a correct way. Given an action-state pair (a, s) and
a set A(s) of possible actions that can be taken in state s, all other actions in
A(s) \ a is assumed to be negative examples until the expert agent does not
take any of them in the same state s. In this case it is necessary to retract the
previous hypothesized negative example.

Given a goal, each training example e = {a, o} belongs to a specific learning
class based on the action a. For each class a theory must be learned in order to
be able to predict the corresponding action of unseen observations. As reported
in algorithm 2, the procedure starts with an empty theory and an empty his-
torical memory. The agent observes the sequence of actions performed by the
demonstrator. For each time-step the agent tries to classify the observation (i.e.,
to predict the corresponding action) by using its learned model. All the actions
that are allowed in the domain, but are not performed by the demonstrator are
supposed to be negative examples for the class a (the correct action) in the state
s. This set N is generated by taking into account all the possible actions that
the agent can perform in s. The classification task returns an action c that is
compared to the correct action a the demonstrator performs. When the action c
does not correspond to the action a a theory revision is needed. All the negative
examples for the class a with the same body of o are excluded from historical
memory. A generalization process on the current theory with the example e and
filtered historical memory starts. At the end of the learning process, the learned
theory T represents the optimal policy.

5 Experimental results

The proposed learning framework has been applied to a pursuit domain, gen-
erally used in the field of agent learning. The experiment regards the problem
of learning a policy in a domain where a predator should capture a prey. This
stochastic environment consists of a 4x4 grid surrounded by a wall, with a preda-
tor and a prey. We assume that the predator caught the prey if the prey lands
on the same square as the predator at the end of its move. The prey moves
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Algorithm 2 IIL
1: errors ← 0
2: T ← ∅
3: M ← ∅
4: loop
5: (o, a)← get an observation-action pair
6: N ← {(o,¬ai)|ai ∈ A(o) \ {a}}
7: c← classify(o,T)
8: if c 6= a then
9: errors++

10: for all e ∈M do
11: if e is negative for the class a with the same body as o then
12: M ←M \ {e}
13: generalize( T , a← o, M)
14: M ←M ∪ {a← o}
15: for all ai ∈ N do
16: if M does not contain the positive example ai ← o then
17: if c = ai then
18: errors++
19: specialize( T , ¬ai ← o, M)
20: M ←M ∪ {a← o}

with random actions, while the predator follows a good user-defined strategy in
order to capture the prey. Both predator and prey can move in four directions,
specifically north, east, south and west. The action of an agent involves moving
in the square immediately adjacent corresponding to the selected direction. In
case of the target square is a wall, then the agent remains in the same square.
The two agents move alternate turns.

An observation is made up of the agent’s perception about the squares sur-
rounding it in the four directions and the square under it. The state of each
square may be empty, wall or agent. Starting from an initial state, once cap-
tured the prey the sequence of observations does not restart by placing agents in
random positions, but it continues from the positions of catch. For example, a
predator agent having a wall to the west and the prey to the east, the observation
is represented by the following set of literals: { observation(a, d1, e), observa-
tion(a, d2, e), observation(a, d3, p), observation(a, d4, w), under(a, e), direc-
tion(d1, named1), direction(d2, named2), direction(d3, named3), direction(d4,
named4), north(named1), south(named2), east(named3), west(named4), } where
a stay for predator agent, p for prey agent, e for empty, and w for wall.

Fixed the strategy to capture the prey, we simulated a scenario in which a
predator instructs another agent to capture the prey with a minimum number of
steps. Hence, given an observation, the action taken from the predator represents
a positive training examples, while all the other possible actions are supposed
to be negative examples.

We have generated 10 sequences of observations. Each sequence, containing
the traces of prey’s captures, is made up of 322,5 positive and 967,5 negative
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observation-action pairs on average. Starting from a positive instance each al-
ternative action has been hypothesised to be a negative instance.

A first experiment has been performed on the whole dataset without pro-
viding the system with any background knowledge. Over all the 10 sequences
the system learned a theory (policy) made up of 9,4 clauses, obtained by 14,8
generalisation and 2,2 specialisation (26,4 errors) on average.

In order to evaluate the behaviour of the learning process, we generated a
sequence made up of 1332 observation-action pairs. The Figure 1 reports on the
left, the number of errors (a generalisation or a specialisation request) the agent
made during the learning phase. In particular, as we can see the number of errors
grows until the system learns the correct policy (i.e., the learned classification
theory). The Figure 1 on the right, reports the prediction accuracy of the policy,
learnt by the agent during the imitation process, on the complete historical
memory.

An example of learned rule is { move(A, B) :- predator(A), direction(B, D),
direction(F, H), observation(A, I, J), observation(A, B, E), observation(A, F,
G), south(H), north(D), wall(E), prey(G), empty(J), under(A, J). }

where a predator A moves toward north when at south there is the prey and
at north there is a wall.

Fig. 1. Errors during the learning phase. The figure on the right represents the predic-
tion accuracy (%) over the entire historical memory for each theory revision.

A new experiment has been performed with the system provided with a
background knowledge containing several rules defining the concept of next di-
rection. An example is { next(A,B):- north(A), east(B).}. This rule denotes
that to north direction follows the east direction. The learned theory abstracts
the concept of direction. An example of the learned rule is
{move(A, B) :- predator(A), direction(B, D), direction(G, F), next(D, H),

next(H, F), next(F, E), next(E, D), observation(A, B, I), observation(A, G, K),
wall(I), under(A, J), empty(J), prey(K). }

where the predator A moves in the direction D when it observes that in D
there is a wall and opposite there is the prey K at any edge of the grid (D may
be one of the for direction). This action applies to four different states.

Over all the same 10 sequences of the previous experiments, the system
learned a theory made up of 6,4 clauses, obtained by 12,1 generalization and
3,5 specialization (22 errors) on average. In order to evaluate the behavior of
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the learning process with the use of a background knowledge, we generated a
sequence made up of 1276 observation-action pairs.

Fig. 2. Errors during the learning phase. The figure on the right represents the predic-
tion accuracy (%) over the entire historical memory at each revision theory with the
use background knowledge.

The Figure 2 reports the number of errors (a generalization or a specialization
request) the agent made during the learning phase and prediction accuracy of
the policy.

It is interesting to note that the theory learned with the use of background
knowledge does not represent the actual directions, but the relationship between
them. This allows an abstraction on states. Indeed, the policy learned results
more compact (a lower number of clauses on average compared with the first
experiment) and each clause is applicable to a subset of states.

6 Conclusion

Recently have been studied forms of social learning inspired by the ways people
learn and their applications in robotics. In the field of agent and multi-agent
systems most of the approaches used to learn does not allow the use of a high-
level language to describe the domain and knowledge about it. In this paper
we have presented a relational framework that allows to quickly, accurately and
incrementally train an unskilled agent to imitate a demonstrator (human or ar-
tificial). The proposed technique has been implemented and tested on a dataset
belonging to a pursuit domain generally used in the field of agent learning, and
the results confirm the validity of the technique. As a future work, we are plan-
ning to extend the framework to a domain in which an agent can learn different
skills by different teachers autonomously choosing skills and demonstrations.
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