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Abstract. Protein fold recognition is an important problem in molecu-
lar biology. Machine learning symbolic approaches have been applied to
automatically discover local structural signatures and relate these to the
concept of fold in SCOP. However, most of these methods cannot handle
uncertainty being therefore not able to solve multiple prediction prob-
lems. In this paper we present an application of the symbolic-statistical
framework PRISM to a multi-class protein fold recognition problem. We
compare the proposed approach to a symbolic-only technique and show
that the hybrid framework outperforms the symbolic-only one in terms
of predictive accuracy in the multiple prediction problem.

1 Introduction

Proteins form the very basis of life. They are responsible for regulating a variety
of activities in all known organisms, from replication of the genetic code to trans-
porting oxygen or regulating the cellular machinery. Proteins accomplish their
task by three-dimensional tertiary and quaternary interactions between vari-
ous substrates such as DNA and RNA, and other proteins. Therefore knowing
the structure of a protein is an essential prerequisite to gain a thorough under-
standing of the protein’s function. However, once the protein sequence has been
determined, deducing its unique three-dimensional native structure is a very
hard task. For this reason, many efforts have been made to develop methods for
predicting proteins’ structure given their amino acid sequence. Important com-
petitions such as CASP and CAFASP2 [1] have given rise to many computational
methods for the protein structure prediction problem. Despite the large amount
of effort expended, the protein folding or protein structure prediction problem
remains largely unsolved. Thus, there is strong motivation to continue working
on the many remaining open problems that the protein structure modeling area
poses.

Protein folding is the process by which a protein assumes its characteristic
functional shape or tertiary structure, also known as the native state. All protein
molecules are linear heteropolymers composed of amino acids and this sequence
is known as the primary structure. Most proteins can carry out their biologi-
cal functions only when folding has been completed, because three-dimensional
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shape of the proteins in the native state is critical to their function. A partic-
ular fold is adopted by a certain protein sequence/structure following several
constraints which can be local or global. Local signatures, which are those dealt
with in this paper, relate to a short region that may involve a particular sequence
or arrangement of secondary structures. Structural signatures are hard to classify
and although several automated methods have been proposed, knowledge about
structural signatures depends primarily on human expertise. However, with the
increase of the number of protein structures, intensive efforts have been made
for the development of automated methods.

In the field of machine learning, approaches such as artificial neural networks
or hidden markov models have been applied successfully to several problems
of molecular biology [2]. However most of these techniques, being not able to
model long range interactions, have had their best results on sequence data,
while the problem of dealing with the three-dimensional structure has not been
tackled very much. On the other side, symbolic approaches based on first-order
logic representations have the power to deal with such complex domains and
are very suitable to model rich structures and relations between objects. One
of these approaches is ILP (Inductive Logic Programming) [3] that learns rules
from examples and background knowledge. This technique, being able to model
relations, has been applied successfully to some problems in structural molecular
biology [4]. However, a major drawback of this symbolic approach is the limited
ability to handle uncertainty. Rules in ILP are deterministic and there is no way
to handle the uncertainty that may characterize a certain problem.

In this paper, we consider a previous study [5] in the protein folding area
that uses ILP to automatically discover structural signatures of protein fold
and function. A problem that arises in this previous work is that of multiple
predictions, i.e. an example which represents a protein domain is predicted to be
in several folds. We apply to the same problem the symbolic-statistical framework
PRISM [6] in order to solve the multi-class classification problem and show
that the hybrid approach outperforms the symbolic one in terms of predictive
accuracy.

The paper is organized as follows. In Section 2 we report a brief introduction
of ILP and its application on the structural signatures performed in [5]. Section
3 presents PRISM as a symbolic-statistical framework. Section 4 presents the
modeling of the problem in [5] in the framework PRISM and the experiments.
Section 5 contains conclusions and future work.

2 Multi-relational Learning for Structural Signatures of
Proteins

Multi-relational data mining applications in biological domains [4] have exploited
the expressive power of logic to represent complex structures. As pointed out in
[5], since structures consist of interactions among objects and sub-structures
and since ILP is suitable to learn logical representations, it can be applied to
problems encountered in protein structure. Moreover, one of the most powerful
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advantages of ILP is that of using background knowledge and since great amount
of knowledge has been gathered during years of research on protein structure, all
this expert knowledge can be used in ILP to discover principles of protein fold.
Another advantage of ILP is that rules are amenable to human interpretation.

In ILP, the model learned from the data is a set of rules. The data consist of
the examples, while the background knowledge expresses what the expert already
knows about a certain problem. An application of ILP to automatically discover
the structural signatures of protein folds and function has been presented in
[5]. In this work sets of rules were learned for each protein fold, in particular
59 signatures (rules) were learned from 20 populated folds. Positive examples
were derived from SCOP [7] by selecting representative domains for the fold
under study while the negative examples were derived by selecting domains
from different folds of the same class where the classes are all-a, all-8, a/f
and a 4+ (. For each positive and negative example, it was derived structural
information (attributes such as total number of residues), relational information
(adjacency of the secondary structure) and local information (such as average
hydrophobicity of each secondary structure element and the presence of proline
residues). In the following, we show part of the background knowledge that is
used in the experiments to represent the three-dimensional structure information
of the protein domains which represent the examples for the learning task.

adjacent(D, A, B, Pos, TypA, TypB): this predicate indicates that the
secondary structures A and B are consecutive. Furthermore, their respective
types are TypA and TypB each of which can be one of the known types of
secondary structure. Pos is the serial number of the secondary structure element
A. Helices and strands are numbered separately.

coil(A,B,Length): bounds Length to the length of the loop between secondary
structures A and B or is true if loop has Length 4-50%. A brief description of
two of the signatures (rules) learned is given below, consisting of the Prolog
representation and the corresponding translation in English where the symbol
7:-” stands for 7if...then...”.

Rule (lambda repressor): The protein is between 53 and 88 residues long. Helix
A at position 3 is followed by helix B. The coil between A and B is about six
residues long.

fold("lambda repressor’, X) :- total length (53 < X < 88), adjacent(X, A, B,
3, h, h), length_loop(A, B, 6).

Rule(Rossman fold): Strand A at position 1 is followed by helix B. Strand C
at position 6 is followed by helix D. The length_loop between A and B is about
one residue long.

fold"NAD(P)-binding Rossmann-fold’, X) :- adjacent(X, A, B, 1, e, h), adja-
cent(X, C, D, 6, e, h), length_loop(A, B, 1).
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Since protein folding is a complex phenomenon, a problem that arises in [5]
are multiple predictions. Many examples are predicted to be in different folds
i.e. signatures of different folds explain the same example. For instance, the
protein domain ”dlhslb_” is predicted to be in three folds: ”DNA-binding 3-
helical bundle”, ”Periplasmic binding protein-like II” and ”beta-Grasp” while
in fact it belongs only to the fold ”Periplasmic binding protein-like II”. A large
number of examples are involved in the multiple prediction problem hence a
ranking mechanism is needed so that different folds can have different importance
towards an example. We decided to use probability to model the uncertainty that
arises when multiple predictions exist. On the other side, we want to preserve the
expressive power of logical representations. Therefore, we need a framework that
is able to provide expressive power and uncertainty handling. PRISM provides
both the logic language and the ability to incorporate probability in logical
descriptions. Moreover, providing learning capabilities for estimating parameters
from observations (examples), it represents a suitable framework to deal with
uncertainty when classifying examples with multiple potential predictions.

3 The Symbolic-Statistical Framework PRISM

PRISM (PRogramming In Statistical Modeling) [6] is a symbolic-statistical mod-
eling language that integrates logic programming with learning algorithms for
probabilistic programs. PRISM programs are not only just a probabilistic ex-
tension of logic programs but are also able to learn from examples through the
EM (Expectation-Maximization) algorithm which is built-in in the language.
PRISM represents a formal knowledge representation language for modeling sci-
entific hypotheses about phenomena which are governed by rules and probabil-
ities. The parameter learning algorithm [8], provided by the language, is a new
EM algorithm called graphical EM algorithm that when combined with the tab-
ulated search has the same time complexity as existing EM algorithms, i.e. the
Baum-Welch algorithm for HMMs (Hidden Markov Models), the Inside-Outside
algorithm for PCFGs (Probabilistic Context-Free Grammars), and the one for
singly connected BNs (Bayesian Networks) that have been developed indepen-
dently in each research field. Since PRISM programs can be arbitrarily complex
(no restriction on the form or size), the most popular probabilistic modeling for-
malisms such as HMMs, PCFGs and BNs can be described by these programs.

PRISM programs are defined as logic programs with a probability distribu-
tion given to facts that is called basic distribution. Formally a PRISM program
is P = F'U R where R is a set of logical rules working behind the observations
and F is a set of facts that models observations’ uncertainty with a probabil-
ity distribution. Through the built-in graphical EM algorithm the parameters
(probabilities) of F are learned and through the rules this learned probability
distribution over the facts induces a probability distribution over the observa-
tions. As an example, we present a hidden markov model with two states slightly
modified from that in [8]:
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values(init, [s0,s1]). % State initialization
values(out(_),[a,b]). % Symbol emission
values(tr(_),[s0,s1]). % State transition
hmm(L) :- % To observe a string L
str_length(N), % Get the string length as N
msw(init,S), % Choose an initial state randomly
hmm(1,N,S,L). % Start stochastic transition (loop)
hmm(T,N,_,[]) :- T > N, % Stop the loop
hmm(T,N,S,[Ob | Y]) :- % Loop: current state is S, current time is T
msw(out(S),0b), % Output Ob at the state S
msw(tr(S),Next), % Transit from S to Next.
T1is T+1, % Count up time
hmm(T1,N,Next,Y). % Go next (recursion)
str_length(10). % String length is 10

set_params :- set_sw(init, [0.9,0.1]), set_sw(tr(s0), [0.2,0.8]), set_sw(tr(sl),
[0.8,0.2]), set_sw(out(s0),[0.5,0.5]), set_sw(out(s1),[0.6,0.4]).

The most appealing feature of PRISM is that it allows the users to use ran-
dom switches to make probabilistic choices. A random switch has a name, a
space of possible outcomes, and a probability distribution. In the program above,
msw(init,S) probabilistically determines the initial state from which to start by
tossing a coin. The predicate set_sw( init, [0.9,0.1]), states that the probability
of starting from state s0 is 0.9 and from sl is 0.1. The predicate learn in PRISM
is used to learn from examples (a set of strings) the parameters (probabilities of
init, out and tr) so that the ML (Maximum-Likelihood) is reached. For example,
the learned parameters from a set of examples can be: switch init: s0 (0.6570),
s1 (0.3429); switch out(s0): a (0.3257), b (0.6742); switch out(sl): a (0.7048),
b (0.2951); switch tr(s0): sO (0.2844), s1 (0.7155); switch tr(sl): sO (0.5703), sl
(0.4296). After learning these ML parameters, we can calculate the probability of
a certain observation using the predicate prob: prob(hmm([a,a,a,a,a,b,b,b.b b))
= 0.000117528. This way, we are able to define a probability distribution over the
strings that we observe. Therefore from the basic distribution we have induced
a probability distribution over the observations.

4 PRISM Modeling of Structural Signatures

What we need to model in PRISM the structural signatures of protein domains
is a set of rules and a set of facts with a probability distribution over them.
The set of 59 rules learned in [5] can be used without any changes. We have to
define the random switches and learn for them a probability distribution which
models the uncertainty about the protein domains for their classification. In
the predicate adjacent(D, A, B, Pos, TypA, TypB) that is used as background
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knowledge, we define a random switch that probabilistically assigns the values e
or h (strand or helix) to TypA. What we have modeled in this way is a probability
distribution over secondary structures that are of type e or h. Therefore after
learning the parameters for this random switch we have two values that represent
the probability that a secondary structure is of type e or h in the dataset of
training. Another random switch that we define is that based on the length of
the secondary structure. This represents the probability that a certain secondary
structure has a certain length. The possible values of the length of the secondary
structure define the space of possible outcomes for this second random switch.

We used as training data the dataset used in [5] and performed the experi-
ments in PRISM version 1.10 through a 5-fold cross-validation on 381 examples.
After learning the parameters for the two random switches we calculated the
probability for each of the observations. Now we explain how these probabilities
can be used to solve the problem of multiple predictions. In multi-relational data
mining, cases of multi-class classifications are treated by assigning a test exam-
ple with multiple predictions to the fold which covers the maximum number
of examples. For example, if for the fold " DNA-binding 3-helical bundle” have
been learned 4 rules which together cover (explain) 74 training examples and for
the fold ”Periplasmic binding protein-like II” have been learned 3 rules which
together cover 30 examples, then the protein domain ”"dlhslb_” is assigned to
the fold which covers more examples. In this case the prediction is wrong since
the protein domain ”d1lhslb_” in reality belongs to the fold ” Periplasmic binding
protein-like II”. If the number of the examples covered by the folds is equal, the
example is assigned randomly. This has proven to be not an optimal solution
and generally has produced low predictive accuracy in multi-class classification
problems. In order to model the uncertainty of which fold to choose in case of
multiple predictions we use the probabilities of the observations that we compute
in PRISM. We sum the probabilities of the observations (training examples) that
belong to the same fold. In this way we rank the folds with a probability instead
of the number of the examples covered and in case of a multiple prediction for an
example of testing we assign the example to the fold with a greater probability.

We have performed two experiments. In the first we used as a classification
criterion the number of covered examples for each fold, i.e. examples with mul-
tiple predictions (covered by rules belonging to different folds) were assigned
to the fold with the greatest number of covered examples. While in the second
experiment we used the probability of each fold to solve multiple predictions,
i.e. an example with multiple predictions was assigned to the fold with the high-
est probability. Table [I] contains the results of these experiments. Each column
corresponds to one of the datasets in the 5-fold cross-validation and contains for
each row the test results, i.e. number of correct classified examples towards the
number of all the examples of testing. The number of examples with multiple
predictions is about 63 % of the total number of examples.

As we can see from the table, in the Experiment 2 where we used the system
PRISM and modeled the uncertainty with the probabilities of the observations,
we obtained a predictive accuracy of 65,35 % towards 49,6 % of the Experiment
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Table 1. Results of the 5-fold cross-validation

Dataset 1|Dataset 2|Dataset 3|Dataset 4|Dataset 5|Overall
Exp. 1| 37/76 34/76 45/76 40/76 33/77 |189/381
Exp. 2| 54/76 50/76 51/76 52/76 42/77 |249/381

1 where we do not use probabilities. The difference in predictive accuracy is sig-
nificant at the 0,005 level in a paired t-test. Analyzing the experiments’ results,
we observed that the significant difference in accuracy among the two experi-
ments is due to the fact that for many examples with multiple predictions, their
classification in the fold with the greatest probability was correct. This shows
that fold’s probability provides a more principled and robust method for han-
dling the uncertainty of multiple predictions against the fold’s number of covered
examples.

The experiments validate our approach of handling the uncertainty of multiple
predictions through fold probabilities. Using PRISM it was possible to learn fold
probabilities from observations (training examples) and therefore better identify
the most probable fold for a test example with multiple predictions. What we
have learned from this application is that hybrid symbolic-statistical approaches
can solve problems for which single symbolic approaches fail, such as problems
where uncertainty must be dealt with.

5 Conclusions and Future Work

In this paper we have applied the symbolic-statistical framework PRISM to a
multi-class protein fold recognition problem. We have exploited the ability of
PRISM to represent proteins’ three-dimensional structures through logic pro-
grams and to model the uncertainty about observations through learning switch
probabilities. In dealing with a multi-class prediction problem we have used prob-
ability of protein folds to correctly classify test examples with multiple predic-
tions. We have shown that the proposed method outperforms the symbolic-only
approach in terms of predictive accuracy. This is to the best of our knowledge
the first application of the framework PRISM to a problem of protein folding
and multi-class prediction.

As future work we intend to apply PRISM to other datasets for protein fold
recognition problems. We believe that PRISM, having the expressive power of a
logic-based language and the ability to deal with uncertainty in a robust manner
through EM based learning algorithms, provides a valid framework for dealing
with structural domains with intrinsic uncertainty. Moreover, we intend to eval-
uate the performance of our approach towards other methods that have been ap-
plied to multi-class classification problems such as support vector machines and
neural networks [9] which are among the state-of-the-art discriminative methods
that have produced accurate results for the multi-class protein fold recognition
problem.
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