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Abstract.  Large quantities of metabolic profiling data are being gathered 
intensively in the rapidly growing field of Metabolomics. However, such data, 
in order to provide knowledge, must be machine-explored by robust methods 
that deal with complexity and uncertainty. Symbolic machine learning methods 
have the power to model structural and relational complexity while statistical 
machine learning ones provide principled approaches to uncertainty modeling. 
In this paper, we apply a hybrid symbolic-statistical framework to mine time-
series sequences of reactions for biologically active paths in metabolic 
networks. We show through experiments that our approach provides a robust 
methodology for knowledge discovery in Systems Biology. 

1   Introduction 

Metabolomics [1] is a rapidly growing field. Analytical techniques and instruments 
such as Mass Spectrometry (MS) and Nuclear Magnetic Resonance (NMR) for 
gathering and analyzing voluminous metabolic data are being intensively refined. MS 
is now able to detect molecules at concentrations as low as 10

�18
molar, and high-field 

NMR can efficiently differentiate between molecules that are highly similar in 
structure. The main problem in this research area is the study of the metabolome [2] 
which represents the collection of all the metabolites in a biological organism. This 
set of molecules consists of metabolic intermediates, hormones and other signalling 
molecules, and secondary metabolites. All these represent the chemical fingerprints 
that every specific cellular process leaves behind. Thus, in order to understand how 
cells work it is important to explore the metabolome in a principled and robust 
manner. However, the separate study of the metabolome would not give a deep 
comprehension of the organism,  because biological systems� behavior is determined 
by complex interactions between their building components. Therefore, an integrated 
approach to studying biological systems is necessary. This has given rise to the 
Systems Biology [3] approach to modeling biological phenomena. In Systems 
Biology the main problem is to uncover and model how function and behavior of the 
biological machinery are implemented through complex interactions among its 
building blocks. Metabolomics data provide precious traces of the cell�s circuits 
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functioning, hence it is highly important for the Systems Biology approach to 
integrate metabolomics for a deeper understanding of biological systems [4].  

Since biological circuits are hard to model and simulate, many efforts [5] have 
been made to develop computational models that can handle their intrinsic 
complexity. In this paper we focus on a particular problem of Systems Biology that 
concerns the modeling of metabolic pathways and the possibility to discover 
biologically active paths. A metabolic pathway is a sequence of chemical reactions 
occurring within the cell. These reactions are catalyzed by enzymes which are 
particular proteins that convert metabolites (input molecules) in other molecules that 
represent the products of the reaction. These products can be stored in the cell under 
certain forms or can cause the initiation of another metabolic pathway. A metabolic 
network of a cell is formed by the metabolic pathways occurring in the cell. It is 
through the metabolic networks that every single living organism carries out all its 
activities. Thus, pathway analysis is crucial to understand cell�s behavior and machine 
learning methods, that are not limited to only simulate biological networks, are 
essential to infer knowledge from exponentially growing observation data gathered by 
high-throughput instruments.  

Since a reaction can happen if the input molecules are available to the catalytic 
enzyme, a modeling framework must be able to model relations among entities. 
Symbolic approaches such as logic-based techniques have the potential to model 
relations in structural complex domains.  First-order logic representations have also 
the advantage that models are easily comprehensible to humans. Moreover, since 
most part of biological systems performs its activity remaining hidden to the human 
modeler, machine learning techniques can play an important role in discovering latent 
phenomena. However, symbolic-only approaches suffer from the incapability of 
handling uncertainty. In models built with symbolic-only approaches, the learned 
rules are deterministic and do not incorporate any kind of mechanism for uncertainty 
modeling. On the other side, biological systems intrinsically behave in a stochastic 
fashion with many interactions probable to happen. Since cell�s life is determined by 
the most probable interactions, handling uncertainty is crucial when the cell�s 
machinery must be modeled. Statistical approaches based on the probability theory 
represent a valuable mechanism to govern uncertainty. However, observations of 
biological systems rarely reflect exactly what happens inside them. Therefore, 
estimation techniques are precious in order to model what we cannot observe. 
Statistical machine learning methods have the ability to learn probability distributions 
from observations and hence are suitable for modeling biological systems. On the 
other side, statistical-only approaches rarely are able to reason about relations and/or 
interactions among biological circuits as symbolic approaches do. Hence, there is 
strong motivation on developing and applying hybrid approaches to modeling 
biological systems.  

The contribution of this paper is at the intersection of Systems Biology, 
Metabolomics and Machine Learning. We apply a hybrid symbolic-statistical 
framework to the problem of modeling metabolic pathways and mining active paths 
from time-series data. We show through experiments the feasibility of mining 
significant paths from metabolomics data in the form of traces of sequences of 
reactions.  
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The paper is organized as follows. Section 2 describes the problem of modeling  
metabolic pathways and the necessity for symbolic-statistical machine learning. 
Section 3 describes the hybrid framework PRISM. Section 4 describes modeling in 
PRISM of the Bisphenol A Degradation pathway of Dechloromonas aromatica.
Section 5 presents experiments on mining stochastically generated sequences of 
reactions for biologically active paths. Section 6 concludes discussing related and 
future work. 

2   Metabolic Pathways 

Metabolic pathways can be represented as graphs where each node represents a 
chemical compound and a chemical reaction corresponds to a directed edge labeled 
by a protein that catalyzes the reaction. Thus, there is an edge from one compound 
(metabolite) to another compound (product) if there is an enzyme that transforms the 
metabolite into product. Figure 1. shows part of the pathway of Bisphenol A 
Degradation in Dechloromonas aromatica extracted from KEGG1 database. We have 
chosen this pathway from the KEGG because, as we can see from Figure 1, starting 
from one point in the pathway there are multiple paths that can be explored. 
Therefore, the task of mining biologically active paths is harder because more paths 
should be explored in order to discover the active ones.   

                

                           

C13623

1.97.1.-

C13624C13625 C13626

1.14.13.-
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Fig. 1. Part of the metabolic pathway of  Bisphenol A Degradation in 
Dechloromonas aromatica. The complete pathway is available from KEGG.  

In order to model a metabolic pathway, a suitable framework for their simulation 
and mining must be able to handle relations. First-order logic representations have the 

                                                          
1 http://www.genome.jp/kegg/ 
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expressive power to model structural and relational problems. The metabolic pathway 
in Figure 1 can be easily represented in a first-order logic formalism as follows: 

enzyme( 1.97.1.-, reaction_1_97_1_, [c13623], [c13625,c13624,c13626]). 
enzyme( 1.14.13.-, reaction_1_14_13_a, [c13624], [c13629). 
enzyme( 1.14.13.-, reaction_1_14_13_b, [c13624], [c13631]). 
enzyme( 1.1.3.-, reaction_1_1_3, [c13631], [c13633]). 
enzyme( 1.14.13.-, reaction_1_14_13_c, [c13631], [c13634]). 

However, this representation does not incorporate any further information about the 
reactions. For example, as we can see there are two competing reactions because the 
enzyme 1.14.13.- catalyzes two different reactions with the same chemical compound 
c13624 in input. Subsequently, two enzymes,  1.14.13.- and 1.1.3.-, can elaborate the 
same input metabolites and thus two reactions compete among them. The occurring of 
any of the reactions determines a certain sequence of successive reactions instead of 
another. Hence, it is important to know which reaction among the two is more 
probable to happen. The most probable reaction determines the biologically active 
path under certain conditions. This means that under certain conditions, a biological 
path becomes inactive or useless and another path may become active and yield 
different overall products in the whole pathway. The conditions under which the 
reactions happen, may change stochastically due to the random behavior of the 
biological environment. For example, some input metabolites can suddenly be not 
available. Their absence can cause a certain reaction not to occur and give rise to 
another sequence in the metabolic pathway. Therefore, it is crucial to know how 
probable a certain reaction is. This situation can be modeled by attaching to each 
reaction the probability that it happens. This requires a first-order representation 
framework that can handle for each predicate that expresses a reaction the probability 
that the predicate is true.   

The simple incorporation of probabilities is not enough to model complex 
metabolic networks. The conditions for the reactions to happen depend on many 
factors, such as initial quantity of input metabolites, changes in the physical-chemical 
environment surrounding the cell and many more. For this reason it is a hard task to 
observe all the states of the biological machinery under all the possible conditions and 
try to assign probabilities to reactions. Therefore there is a need for machine learning 
statistical methods that given certain conditions can learn distribution of probabilities 
from observations (the conditions here are meant as physical-chemical entities such as 
temperature, concentration of metabolites, entropy etc). 

In order to model metabolic networks, two tasks must be performed. First, a 
relational model that describes the structure of the pathway must be build. There is 
already a large amount of accumulated knowledge about the structure of metabolic 
pathways such as that in KEGG and we can use all this background knowledge to skip 
the structure building process and concentrate on mining raw wet experimental-
observational data. Indeed, graph structures are abundant but their main disadvantage 
in modeling cell�s life is that they are static. This means that the pathway in Figure 1. 
does not express the stochastic dynamics in metabolic reactions. These graphs can be 
seen as useful static templates to interpret what can happen in the cell, but to 
faithfully reconstruct the cell�s activity we must build a dynamic model that 
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represents at a certain moment and under certain conditions what happens inside the 
cell. Thus, in order to mine biologically active patterns in the pathway under some 
conditions, we must first learn a dynamic-stochastic model from sequences of 
reactions that have been observed under those conditions. In order to confirm the 
feasibility of our approach of mining biological active patterns, we will proceed as 
follows. We will stochastically change the conditions for the reactions to happen 
(Section 5 describes how this is performed). Then, under each set of conditions, we 
stochastically generate sequences of reactions and finally after learning probability 
distributions for the reactions of the pathway, we perform mining for biological active 
patterns by querying the dynamic model we have built. 

3   The Hybrid Symbolic-Statistical Framework PRISM 

PRISM (PRogramming In Statistical Modelling) [6] is a symbolic-statistical 
modeling language that integrates logic programming with learning algorithms for 
probabilistic programs. PRISM programs are not only just a probabilistic extension of 
logic programs but are also able to learn from examples through the EM (Expectation-
Maximization) algorithm which is built-in in the language. PRISM represents a 
formal knowledge representation language for modeling scientific hypotheses about 
phenomena which are governed by rules and probabilities. The parameter learning 
algorithm [7], provided by the language, is a new EM algorithm called graphical EM 
algorithm that when combined with the tabulated search has the same time 
complexity as existing EM algorithms, i.e. the Baum-Welch algorithm for HMMs 
(Hidden Markov Models), the Inside-Outside algorithm for PCFGs (Probabilistic 
Context-Free Grammars), and the one for singly connected BNs (Bayesian Networks) 
that have been developed independently in each research field. Since PRISM 
programs can be arbitrarily complex (no restriction on the form or size), the most 
popular probabilistic modeling formalisms such as HMMs, PCFGs and BNs can be 
described by these programs.  

PRISM programs are defined as logic programs with a probability distribution 
given to facts that is called basic distribution. Formally a PRISM program is P = F
�R where R is a set of logical rules working behind the observations and F is a set of 
facts that models observations� uncertainty with a probability distribution. Through 
the built-in graphical EM algorithm the parameters (probabilities) of F are learned 
and through the rules this learned probability distribution over the facts induces a joint 
probability  distribution over the set of least models of P, i.e. over the observations. 
This is called distributional semantics [8]. As an example, we present a hidden 
markov model with two states slightly modified from that in [7]: 

values(init,[s0,s1]).   % State initialization 
values(out(_),[a,b]).   % Symbol emission 
values(tr(_),[s0,s1]).   % State transition 
hmm(L):-    % To observe a string L: 

str_length(N),   % Get the string length as N 
msw(init,S),  % Choose an initial state randomly 
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hmm(1,N,S,L).   % Start stochastic transition (loop) 

     hmm(T,N,_,[]):- T>N,!.  % Stop the loop 
hmm(T,N,S,[Ob|Y]) :-   % Loop: current state is S, current time is T 

msw(out(S),Ob),   % Output Ob at the state S 
msw(tr(S),Next),   % Transit from S to Next. 
T1 is T+1,  % Count up time 
hmm(T1,N,Next,Y).  % Go next (recursion) 

str_length(10).   % String length is 10 
set_params :- set_sw(init, [0.9,0.1]), set_sw(tr(s0), [0.2,0.8]), set_sw(tr(s1), 
[0.8,0.2]), set_sw(out(s0),[0.5,0.5]), set_sw(out(s1),[0.6,0.4]). 

The most appealing feature of PRISM is that it allows the users to use random 
switches to make probabilistic choices. A random switch has a name, a space of 
possible outcomes, and a probability distribution. In the program above, msw(init,S) 
probabilistically determines the initial state from which to start by tossing a coin. The 
predicate set_sw( init, [0.9,0.1]),  states that the probability of starting from state s0 is 
0.9 and from s1 is 0.1. The predicate learn in PRISM is used to learn from examples 
(a set of strings) the parameters (probabilities of init, out and tr) so that the ML 
(Maximum-Likelihood) is reached. For example, the learned parameters from a set of 
examples can be: switch init: s0 (0.6570), s1 (0.3429); switch out(s0): a (0.3257), b 
(0.6742); switch out(s1): a (0.7048), b (0.2951); switch tr(s0): s0 (0.2844), s1 
(0.7155); switch tr(s1): s0 (0.5703), s1 (0.4296). After learning these ML parameters, 
we can calculate the probability of a certain observation  using the predicate prob:
prob(hmm([a,a,a,a,a,b,b,b,b,b]) = 0.000117528. This way, we are able to define a 
probability distribution over the strings that we observe. Therefore from the basic 
distribution we have induced a joint probability distribution over the observations. 

4 Modeling Bisphenol A Degradation Pathway in PRISM 

Since PRISM is a logic-based language, we can easily represent the metabolic 
pathway presented in the previous section. Predicates that describe reactions remain 
unchanged from a language representation point of view. What we need to 
statistically model the metabolic pathway is the extension with random switches of 
the logic program that describes the pathway. We define for every reaction a random 
switch with its relative space outcome. For example, in the following we describe the 
random switches for the reactions in Figure 1. 

values(switch_rea_1_97_1, [rea_1_97_1( yes, yes, yes, yes), rea_1_97_1( yes, no, no, 
no)]). 
values(switch_rea_1_14_13_a,[rea_1_14_13_a(yes, yes), rea_1_14_13_a(yes, no)]). 
values(switch_rea_1_14_13_b,[rea_1_14_13_b( yes, yes ),rea_1_14_13_b( yes, no)]). 
values(switch_rea_1_1_3,[rea_1_1_3( yes, yes ),rea_1_1_3( yes, no)]). 
values(switch_rea_1_14_13_b,[rea_1_14_13_c( yes, yes), rea_1_14_13_c( yes, no)]). 
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For each of the three reactions there is a random switch that can take one of the 
stated values at a certain time. For example, the value rea_1_97_1( yes, yes) means 
that at a certain moment the metabolite c13623 is available and the reaction occurs 
producing the compounds c13623, c13624 and c13625. While the other value 
rea_1_97_1( yes, no, no, no) means that the input metabolite is present but the 
reaction stochastically did not occur , thus the products are not produced. Below we 
report the remaining part of the PRISM program for modeling the pathway in Figure 
1.  Together with the declarations in Section 2 for the possible reactions and those of 
the previous paragraph for the values of the random switches, the following logic 
program forms a model for stochastically modeling the pathway in Figure 1. (The 
complete PRISM code for the whole metabolic pathway can be requested to the 
authors).   

produces( Metabolites, Products ) :- 
 produces( Metabolites, [], Products ). 

produces( Metabolites, Delayed, Products ) :- 
 ( reaction( Metabolites, Name, Inputs, Outputs, Rest ) -> 
  call_reaction( Reaction, Inputs, Outputs, Call ),   
  rand_sw(Call,Value),        
   ((Value == rea_1_97_1( yes, yes, yes, yes ); 
   Value == rea_1_14_13_a(yes, yes,); 
   Value == rea_1_14_13_b(yes, yes,); 
   Value == rea_1_14_13_c(yes, yes,); 

Value == rea_1_1_3( yes, yes ))  ->    
   produces( Rest, Delayed, Products )  
   ;     
   produces(Metabolites, [Reaction|Delayed],Products) 
  ;   
  Products = Metabolites    
 ). 

rand_sw(ReactAndArgs,Value):-  
 ReactAndArgs =..[Predicate|Arguments], 
 (Predicate == rea_1_97_1-> msw(switch_rea_1_97_1,Value) ; 
 (Predicate == rea_1_14_13_a ->  msw(switch_rea_1_14_13_a,Value); 
 (Predicate == rea_1_14_13_b ->msw(switch_rea_1_14_13_b,Value); 

(Predicate == rea_1_14_13_c ->msw(switch_rea_1_14_13_c,Value); 
(Predicate == rea_1_1_3 ->msw(switch_rea_1_1_3,Value) 
;

 true))))).  % do nothing 

In the following, we trace the execution of the above logic program. The top goal 
to prove that represents the observations (sequences of reactions vastly produced by 
high-throughput technologies) for PRISM is produces(Metabolites,Products). It will 
succeed if there is a pathway that leads from Metabolites to Products, in other words 
if there is a sequence of random choices (according to a probability distribution) that 
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makes possible to prove the top goal. The predicate reaction controls among the first 
clauses of the program, if there is a possible reaction with Metabolites in input. 
Suppose that at a certain moment Metabolites = [c13624] and thus two competing 
reactions can happen. Suppose one of the reaction is stochastically chosen and  the 
variables Inputs and Outputs are bounded respectively to [c13624] and [c13629]. The 
predicate call_reaction constructs the body of the reaction that is the predicate Call 
which is in the form: rea_1_14_13_a( _,_,_,_ ). This means that the next predicate 
rand_sw will perform a random choice for the switch switch_rea_1_14_13_a. This 
random choice which is made by the built-in predicate msw(switch_rea_1_14_13_a, 
Value) of PRISM, determines the next step of the execution, since Value can be either 
rea_1_14_13_a( yes, yes) or rea_1_14_13_a( yes, no ). In the first case it means the 
reaction has been probabilistically chosen to happen and the next step in the execution 
of the program which corresponds to the next reaction in the metabolic pathway is the 
call produces( Rest, Delayed, Products ). In the second case, the random choice 
rea_1_14_13_a( yes, no )  means that probabilistically the reaction did not occur and 
the sequence of the execution will be another, determined by the call 
produces(Metabolites, [Reaction|Delayed],Products) which will try stochastically to 
choose the competing reaction catalyzed by the same enzyme 1.14.13.- that given the 
same input c13624 produces the compound c13631. If this reaction occurs, then the 
next reaction in the sequence will be one of  the competing reactions with c13631 as 
input.  

In order to learn the probabilities of the reactions we need a set of observations of 
the form produces(Metabolites,Products). These observations that represent 
metabolomic data, are being intensively collected through available high throughput 
instruments and stored in metabolomics databases. In the next section, we show that 
from these observations, PRISM is able to accurately learn reaction probabilities 
through the built-in graphical EM algorithm. 

5   Mining Stochastically Generated Sequences of Reactions 

A certain metabolic path becomes inactive or useless under certain conditions if a 
certain intermediate reaction in the path cannot occur under those conditions. In this 
paper we are not interested in the conditions themselves (these usually are 
stoichiometrics constraints). What is important for our purpose here, is that the 
conditions evolve stochastically. This means that by simulating various conditions we 
make possible a set of reactions instead of another, i.e. each set of conditions gives 
rise to a set of possible reactions that render some paths in the metabolic pathway 
biologically active and others biologically inactive under those conditions. In order to 
simulate various conditions, for each experiment we randomly assign probabilities to 
reactions. These probabilities represent the switches probabilities in PRISM.  Thus, 
we have for each single experiment a set of conditions under the form of assigned 
reactions� probabilities (as probabilities are randomly generated and some of them 
may be equal to zero or in the range [0,9 - 0,999], among competing reactions one of 
them may not occur and this will cause some paths in the metabolic pathway to be 
inactive). The model constructed in this manner reflects the state of the biochemical 
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environment under the given conditions at a certain moment. When the reactions 
happen, what is caught by a high-throughput instrument is a set of metabolites 
concentrations and their changes. For example, if a certain reaction happens then the 
concentration of the input metabolites decrease and that of the product compounds 
increase. This change is registered as a reaction, therefore catching all the time-series 
changes in concentration (this is actually performed intensively and accurately by 
current high-throughput technologies), means registering a time-series sequence of 
reactions.  These constitute our mining data in order to re-construct biological active 
and inactive paths. By simulating the built model (this corresponds to simply running 
the PRISM program by calling the goal produces(InputMetabolites, Products) where 
InputMetabolites  is a bounded list with the input compounds and Products is a logic 
variable that will be bounded to the list of product compounds yielded by the series of 
reactions), we will have time-series sequences of reactions as if we were observing 
the model by high-throughput instruments.  

In order to evaluate the validity of our approach we have proceeded as follows. For 
each experiment (each experiment has a different set of conditions, i.e. probabilities 
of random switches that are stochastically assigned)  we have stochastically generated 
sequences of reactions by sampling from the previously defined model. This is made 
possible by the predicate sample of PRISM. Once the sequences have been generated, 
we launch the predicate learn of PRISM to learn the probability of each random 
switch from the sequences. Once the model has been reconstructed we query it over 
the sequences and mine biologically active paths with the predicate hindsight(Goal)
where Goal is bounded to the top-goal [InputMetabolites,Products]. With this 
predicate we get the probabilities of all the sub-goals for the top-goal Goal. If any of 
these probabilities is equal to zero then the relative path of the sub-goal is biologically 
inactive under the given conditions. The relative path can be extracted by the 
predicate probf(SubGoal,ExplGraph) where ExplGraph (explanation graph in 
PRISM) represents the explanation paths for SubGoal.

The accuracy of mining the sequences of reactions for biologically active patterns, 
depends on the ability to faithfully recontruct the model from the sequences.  In order 
to assess the accuracy of learning the probabilities of the reactions and mining really 
biologically active paths we adopt the following method to evaluate the learning 
phase for the approach of the previous paragraph. We call the initial probability 
distribution 

MPP ,..,1
(that represents the conditions) assigned to the clauses of the 

logic program the true probability distribution and call the M parameters the true 
parameters. Once the sequences have been stochastically generated by this model, we 
forget the true parameters and replace their probabilities by uniformly distributed 
ones. When learning starts, PRISM learns M new parameters ''

1 ,.., MPP , that 

represent the learned reaction probabilities from the sequences. In order to assess the 
accuracy of the learned '

iP  towards Pi we use the RMSE (Root Mean Square Error) 

for each single experiment with S sequences. 
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In this way we can measure the difference between the actual observations and the 
response predicted by the model. We have performed different experiments with a 
growing number S of sequences in order to evaluate how the number of sequences  
affects the accuracy and the learning time. Moreover, we wanted to test also large 
datasets of sequences in order to provide a robust methodology since real 
metabolomics datasets are in general highly voluminous. For each S we have 
performed 100 experiments where for each experiment the set of conditions is 
stochastically generated as presented above. Table 1. reports for each S the RMSE and 
the learning time on average for 100 experiments. We have used the version 1.10 of 
the system PRISM on a Pentium 4, 2.4GHz machine. 

    Table 1. RMSE and learning time on average for 100 experiments 

As Table 1 shows, the learning accuracy increases as more data are available and 
due to the tabulation techniques in PRISM, learning times increases reasonably as 
data dimension grows significantly. The accuracy of learning can be evaluated as 
good for a number of sequences between 1000 and 15.000 and excellent for a number 
of sequences greater than 15.000 considering that the range where probabilities fall is 
[0,..,1]  and the RMSE is under 0,05. This means that the paths have been faithfully 
reconstructed from the sequences and thus the predicates hindsight and probf in 
PRISM faithfully produce the biologically active paths in the pathway. Indeed, from 
empirical observations, we noted that all the queries performed by these two 
predicates reflected the real biological paths that are supposed to have produced the 
sequences. For instance, we noted that anytime the probability of the reaction 
catalyzed by the enzyme 1.14.13.- (with input the compound c13624 and output 
c13631) was stochastically assigned to be too low (from 0 to 0.05) by the conditions 
generation phase, then the path that involves one of the two next reactions, the one 
catalyzed by the enzyme 1.1.3.- and producing in output c13633, was mined as a 
biologically inactive path for the given conditions. Moreover, we noted for all the 
experiments that by slightly changing the conditions, many inactive paths became 
suddenly active and vice versa. This is quite interesting since it means that we can 
learn from sequences how conditions evolve in order to understand what changes 
them and what governs their randomness. 

S � Number 
of  sequences 

Mean of RMSE on 100 
experiments 

Mean learning time on 
100 experiments 
(seconds) 

100 0,13932 0,047 
200 0,13593 0,068 
500 0,12999 0,090 

1000 0,10405 0,125 
2000 0,09685 0,297 
4000 0,08676 0,484 
8000 0,06808 0,547 
15000 0,05426 0,612 
30000 0,03297 0,695 
50000       0,02924       0,735 
100000       0,02250       1,172 
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6. Discussion and Future Work 

We have applied the hybrid symbolic-statistical framework PRISM to a problem of 
modeling metabolic pathways and have shown through experiments the feasibility of 
learning reaction probabilities from metabolomics data and mining biologically active 
paths from time-series sequences of reactions. The power of the proposed approach 
stands in the description language that allows to model relations and in the ability to 
model uncertainty in a robust manner. Moreover, we have also shown that the 
symbolic-statistical framework PRISM can be used as a stochastic simulator for 
biochemical reactions.   

The most important related work is that in [9] where a probabilistic relational 
formalism is used for modeling metabolic networks. The PRISM program we have 
presented here is syntactically quite similar to the logic program in [9], but is 
semantically different in the way probability distributions are defined. Stochastic 
Logic Programs (SLPs) [10], used in [9], assign probabilities to clauses and define 
probability distributions on Prolog proof trees, while PRISM programs are based on 
the distributional semantics [8] and assign probabilities to atoms as we explained in 
Section 3. Most of other related work is not based on symbolic-statistical approaches. 
In [11, 12], graph-theory based approaches are used to find common or unique sub-
graphs in different pathway graphs to understand better why and how pathways differ 
or are similar. Other approaches are those that focus on text mining for metabolic 
pathways [13]. These methods have been applied to the voluminous literature on 
metabolic pathways to discover knowledge about the structure of the pathways. Text 
mining techniques focus on the structure building process trying to identify, in the 
accumulated experience about metabolic pathways, significant structural properties. 
Other approaches attempt to only stochastically simulate biochemical processes such 
StochSim [14] or FluxAnalyzer [15]. These are powerful tools to model the dynamic 
nature of cells for simulation purposes but lack machine learning abilities to infer 
knowledge from observations.  

Although we have been able to reconstruct the model from the sequences of 
reactions, our approach is far from completing the real picture of a biochemical 
network. Much work remains to be done. First of all, we have not considered 
stoiochiometrics constraints which express quantitative relationships of the reactants 
and products in chemical reactions. We believe that adding these constraints to our 
approach will help reproduce better models. Another direction for future work regards 
plugging in the model other sources of data. Considering multiple sources of data can 
lead to better models in modeling metabolic pathways [16]. In PRISM this is 
straightforward because relational problems can be easily modeled due to the logic-
based language. Another challenge is learning from incomplete raw metabolomic 
data. EM algorithms [17] are the state-of-the art for learning in the presence of 
missing data and since the graphical EM algorithm [7] that PRISM uses, is a version 
of this class of learning algorithms, we believe this will help in dealing with 
incomplete real datasets. In addition, in this paper we have considered a medium-
sized metabolic pathway. For future work we intend to model very large metabolic 
pathways and hierarchical metabolic networks to see how the learning algorithms in 
PRISM scales for large datasets. We think the tabulation techniques used in PRISM 
will greatly help in dealing with a high number of paths to be explored. We also plan 
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to investigate other important problems using the symbolic-statistical framework 
PRISM and other learning capabilities such as inductive relational learning for 
inferring missing pathways in existing metabolic networks or reconstructing whole 
novel pathways from sequences of observations. 
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