
B. Apolloni et al. (Eds.): KES 2007/WIRN 2007, Part I, LNAI 4692, pp. 132–139, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Hybrid Symbolic-Statistical Approach to
Modeling Metabolic Networks

Marenglen Biba, Stefano Ferilli, Nicola Di Mauro, and Teresa M.A. Basile

Department of Computer Science, University of Bari
Via E. Orabona, 4 - 70125 Bari, Italy

{biba,ferilli,ndm,basile}di.uniba.it

Abstract. Biological systems consist of many components and interactions
between them. In Systems Biology the principal problem is modeling complex
biological systems and reconstructing interactions between their building
blocks. Symbolic machine learning approaches have the power to model
structured domains and relations among objects. However biological domains
require uncertainty handling due to their hidden complex nature. Statistical
machine learning approaches have the potential to model uncertainty in a robust
manner. In this paper we apply a hybrid symbolic-statistical framework to
modeling metabolic pathways and show through experiments that complex
phenomenon such as biochemical reactions in cell’s metabolic networks can be
modeled and simulated in the proposed framework.

Keywords: Systems biology, metabolic networks, symbolic-statistical
frameworks, machine learning, statistical relational learning.

1 Introduction

Biological systems’ behavior is determined by complex interactions between their
building components. In Systems Biology [1] the main problem is to uncover and
model how function and behavior of the biological machinery are implemented
through these interactions. Since biological circuits are hard to model and simulate,
many efforts [2] have been made to develop computational models that can handle
their intrinsic complexity. In this paper we focus on a particular problem of Systems
Biology that concerns the modeling of metabolic pathways. A metabolic pathway is a
sequence of chemical reactions occurring within the cell. These reactions are
catalyzed by enzymes which are particular proteins that convert metabolites (input
molecules) in other molecules that represent the products of the reaction. These
products can be stored in the cell under certain forms or can cause the initiation of
another metabolic pathway. A metabolic network of a cell is formed by the metabolic
pathways occurring in the cell.

Since a reaction can happen if the input molecules are available to the catalytic
enzyme, a modeling framework must be able to model relations among entities.
Symbolic approaches such as logic-based techniques have the potential to model
relations in structural complex domains and there have been a growing number of

 A Hybrid Symbolic-Statistical Approach to Modeling Metabolic Networks 133

biological applications of these methods [3]. First-order logic representations have
also the advantage that models are easily comprehensible to humans. Moreover, since
most part of biological systems performs its activity remaining hidden to the human
modeler, machine learning techniques can play an important role in discovering latent
phenomena. However, symbolic-only approaches suffer from the incapability of
handling uncertainty. In models built with symbolic-only approaches, the learned
rules are deterministic and do not incorporate any kind of mechanism for uncertainty
modeling. On the other side, biological systems intrinsically behave in a uncertain
fashion with many interactions probable to happen. Since cell’s life is determined by
the most probable interactions, handling uncertainty is crucial when the cell’s
machinery must be modeled. Statistical approaches based on the probability theory
represent a valuable mechanism to govern uncertainty. However, observations of
biological systems rarely reflect exactly what happens inside them. Therefore,
estimation techniques are precious in order to model what we cannot observe.
Statistical machine learning methods have the ability to learn probability distributions
from observations and hence are suitable for modeling biological systems. On the
other side, statistical-only approaches rarely are able to reason about relations and/or
interactions among biological circuits as symbolic approaches do. Hence, there is
strong motivation on developing and applying hybrid approaches to modeling
biological systems.

The paper is organized as follows. Section 2 describes the problem of modeling the
aromatic amino acid pathway of yeast and the necessity for symbolic-statistical
machine learning. Section 3 describes the hybrid framework PRISM. Section 4
describes modeling of the problem in the framework PRISM. Section 5 presents
experiments and Section 6 concludes and presents future work.

2 Metabolic Networks

Metabolic networks can be represented as graphs where nodes represent reactions and
there are two kinds of arcs, those entering the node and labeled with the input
molecules and those exiting the node and labeled with the products of the reaction.
Fig. 1. shows part of the aromatic pathway for Yeast presented in [4]. The node
represents the reactions made possible by the enzymes 2.5.1.19, 4.6.1.4 and 5.4.99.5
(KEGG identifiers are used for enzymes and reactions). A possible reaction is that of
converting the metabolites C00074 and C00008 into the products C00009 and
C01269. Then the metabolite C01269 takes part into another reaction made possible
by the enzyme 4.6.1.4 and so on. Such interactions can be easily expressed using a
first-order logic representation. For example the interactions can be expressed by the
following predicates:

enzyme(2.5.1.19, reaction_2_5_1_19, [C00074,C00008], [C00009,C01269]).
enzyme(4.6.1.4, reaction_4_6_1_4, [C01269], [C00009,C00251]).
enzyme(5.4.99.5, reaction_5_4_99_5, [C00251], [C00254]).

134 M. Biba et al.

2.5.1.19 4.6.1.4

C00074 C00008

C00009 C01269

C00251C00009

5.4.99.5

C00254

Fig. 1. Part of the aromatic pathway for Yeast

However, this representation does not incorporate any further information about
the reactions. For example, there can be competing reactions if two enzymes elaborate
the same input metabolites and the occurring of any of the reactions determines a
certain sequence of successive reactions instead of another. Hence, it is important to
know which reaction among the two is more probable to happen. Moreover, input
metabolites not always are available. Their absence can cause a certain reaction not to
occur and give rise to another sequence in the metabolic pathway. Therefore, it is
crucial to know how probable a certain reaction is. This situation can be modeled by
attaching to each reaction the probability that it happens. This requires a first-order
representation framework that can handle for each predicate that expresses a reaction
the probability that the predicate is true.

The simple incorporation of probabilities is not enough to model complex
metabolic networks. The probabilities of the reactions depend on many factors, such
as initial quantity of input metabolites, changes in the physical-chemical environment
surrounding the cell and many more. For this reason it is a hard task to observe all the
states of the biological machinery and try to assign probabilities to reactions.
Therefore there is a need for machine learning methods that can learn distribution of
probabilities from observations.

In order to model metabolic networks, two tasks must be performed. First, a
relational model that describes the reactions must be built. This can be constructed
manually by the expert or learned automatically by machine learning multi-relational
methods. Once the model has been built, the second task is the assignment of
probabilities. In this paper we do not deal with model building. We use the metabolic
pathway built in [4] and model this pathway in a hybrid symbolic-statistical
framework in order to automatically learn the probabilities of the reactions. A logic
program that describes this metabolic pathway has been given in [5]. We extend this
logic program in order to statistically model the pathway in the framework PRISM.
After modeling the pathway in PRISM we perform learning of probabilities and show
through experiments the feasibility of accurately learning reactions probabilities from
metabolomics data using PRISM.

3 The Symbolic-Statistical Framework PRISM

PRISM (PRogramming In Statistical Modelling) [6] is a symbolic-statistical modeling
language that integrates logic programming with learning algorithms for probabilistic
programs. PRISM programs are not only just a probabilistic extension of logic

 A Hybrid Symbolic-Statistical Approach to Modeling Metabolic Networks 135

programs but are also able to learn from examples through the EM (Expectation-
Maximization) algorithm which is built-in in the language. The parameter learning
algorithm [7], provided by the language, is a new EM algorithm called graphical EM
algorithm that when combined with the tabulated search has the same time
complexity as existing EM algorithms, i.e. the Baum-Welch algorithm for HMMs
(Hidden Markov Models), the Inside-Outside algorithm for PCFGs (Probabilistic
Context-Free Grammars), and the one for singly connected BNs (Bayesian Networks)
that have been developed independently in each research field. Since PRISM
programs can be arbitrarily complex, all the formalisms such as HMMs, PCFGs and
BNs can be described by these programs.

PRISM programs are defined as logic programs with a probability distribution given
to facts that is called basic distribution. Formally a PRISM program is P = F ⋃R where
R is a set of logical rules working behind the observations and F is a set of facts that
models observations’ uncertainty with a probability distribution. Through the built-in
graphical EM algorithm the parameters (probabilities) of F are learned and through the
rules this learned probability distribution over the facts induces a probability
distribution over the observations. As an example, we present a hidden markov model
with two states slightly modified from that in [7]:

values(init,[s0,s1]). % State initialization
values(out(_),[a,b]). % Symbol emission
values(tr(_),[s0,s1]). % State transition
hmm(L):- % To observe a string L:
str_length(N), % Get the string length as N
msw(init,S), % Choose an initial state randomly
hmm(1,N,S,L). % Start stochastic transition (loop)
hmm(T,N,_,[]):- T>N,!. % Stop the loop
hmm(T,N,S,[Ob|Y]) :- % Loop: state S,time T
msw(out(S),Ob), % Output Ob at the state S
msw(tr(S),Next), % Transit from S to Next.
T1 is T+1, % Count up time
hmm(T1,N,Next,Y). % Go next (recursion)
str_length(10). % String length is 10
set_params :- set_sw(init, [0.9,0.1]), set_sw(tr(s0),
[0.2,0.8]), set_sw(tr(s1), [0.8,0.2]),
set_sw(out(s0),[0.5,0.5]), set_sw(out(s1),[0.6,0.4]).

The most appealing feature of PRISM is that it allows the users to use random
switches to make probabilistic choices. A random switch has a name, a space of
possible outcomes, and a probability distribution. In the program above, msw(init,S)
probabilistically determines the initial state from which to start by tossing a coin. The
predicate set_sw(init, [0.9,0.1]), states that the probability of starting from state s0 is
0.9 and from s1 is 0.1. The predicate learn in PRISM is used to learn from examples
(a set of strings) the parameters (probabilities of init, out and tr) so that the ML
(Maximum-Likelihood) is reached. For example, the learned parameters from a set of
examples can be: switch init: s0 (0.6570), s1 (0.3429); switch out(s0): a (0.3257), b
(0.6742); switch out(s1): a (0.7048), b (0.2951); switch tr(s0): s0 (0.2844), s1
(0.7155); switch tr(s1): s0 (0.5703), s1 (0.4296).�After learning these ML parameters,
we can calculate the probability of a certain observation using the predicate prob:

136 M. Biba et al.

prob(hmm([a,a,a,a,a,b,b,b,b,b]) = 0.000117528. This way, we are able to define a
probability distribution over the strings that we observe. Therefore from the basic
distribution we have induced a probability distribution over the observations.

4 PRISM Modeling of Aromatic Amino Acid Pathway of Yeast

The logic foundation of PRISM facilitates the construction of a representation of the
metabolic pathway described in the previous section. Predicates that describe
reactions remain unchanged from a language representation point of view. What we
need to statistically model the metabolic pathway is the extension with random
switches of the logic program that describes the pathway. We define for every
reaction a random switch with its relative space outcome. For example, in the
following we describe the random switches for the reactions in Fig. 1.

values(switch_rea_2_5_1_19,[rea_2_5_1_19(yes, yes, yes, yes),rea_2_5_1_19(yes,
yes, no, no)]).
values(switch_ea_4_6_1_4,[rea_4_6_1_4(yes, yes, yes),rea_4_6_1_4(yes, no, no)]).
values(switch_rea_5_4_99_5,[rea_5_4_99_5(yes, yes),rea_5_4_99_5(yes, no)]).

For each of the three reactions there is a random switch that can take one of the
stated values at a certain time. For example, the value rea_2_5_1_19(yes, yes, yes,
yes) means that at a certain moment the metabolites C00074 and C00008 are present
and the reaction occurs producing C00009 and C00251. While the other value
rea_2_5_1_19(yes, yes, no, no) means that the input metabolites are present but the
reaction did not occur, thus the products C00009 and C00251 are not produced.
Below we report the PRISM program for modeling the pathway in Figure 1. (The
complete PRISM code for the whole metabolic pathway can be requested to the
authors).

enzyme('2.5.1.19',rea_2_5_1_19,[C00074,C03175],[C00009,
C01269]).
enzyme('4.6.1.4',rea_4_6_1_4,[C01269],[C00009,C00251]).
enzyme('5.4.99.5',rea_5_4_99_5,[C00251],[C00254]).
can_produce(Metabolites,Products) :-
can_produce(Metabolites,[],Products).
can_produce(Metabolites,Stalled,Products) :-
(possible_reaction(Metabolites,Stalled,Name,Inputs,Outp
uts,Rest) ->
reaction_call(Reaction,Inputs,Outputs,Call),
rand_sw(Call,Value),
((Value == rea_2_5_1_19(yes,yes,yes,yes);
Value == rea_4_6_1_4(yes,yes,yes);
Value == rea_5_4_99_5(yes,yes)) ->
can_produce(Rest,Stalled,Products)
;
can_produce(Metabolites,[Reaction|Stalled],Product));
Products = Metabolites).

 A Hybrid Symbolic-Statistical Approach to Modeling Metabolic Networks 137

rand_sw(ReactAndArgs,Value):-
ReactAndArgs=..[Pred|Args],
(Pred == rea_2_5_1_19 ->msw(switch_rea_2_5_1_19,Value);
(Pred == rea_4_6_1_4 ->msw(switch_rea_4_6_1_4,Value);
(Pred == rea_5_4_99_5 -> msw(switch_rea_5_4_99_5,Value)
;
true))). % do nothing

In the following, we trace the execution of the program. The top goal to prove that
represents the observations in PRISM is can_produce(Metabolites,_,Products). It will
succeed if there is a pathway that leads from Metabolites to Products, in other words
if there is a sequence of random choices (according to a probability distribution) that
makes possible to prove the top goal. The predicate possible_reaction controls among
the first three clauses of the program, if there is a possible reaction with Metabolites
in input. Suppose that at a certain moment Metabolites = [C00074,C00008] and thus
the reaction can happen. The variables Inputs and Outputs are bounded respectively to
[C00074,C00008] and [C00009,C01269]. The predicate reaction_call constructs the
body of the reaction that is the predicate Call which is in the form: rea_2_5_1_19
(_,_,_,_). This means that the next predicate rand_sw will perform a random choice
for the switch. This random choice which is made by the built-in predicate
msw(switch_rea_2_5_1_19,Value) of PRISM, determines the next step of the
execution, since Value can be either rea_2_5_1_19(yes, yes, yes, yes) or
rea_2_5_1_19(yes, yes, no, no). In the first case it means the reaction has been
probabilistically chosen to happen and the next step in the execution of the program
which corresponds to the next reaction in the metabolic pathway is the call
can_produce(Rest, Stalled, Products). In the second case, the random choice
rea_2_5_1_19(yes, yes, no, no) means that probabilistically the reaction did not occur
and the sequence of the execution will be another, determined by the call
can_produce(Metabolites, [Reaction|Stalled],Products).

In order to learn the probabilities of the reactions we need a set of observations of
the form can_produce(Metabolites,_,Products). These observations that represent
metabolomic data, are being intensively collected through available high throughput
instruments and stored in metabolomics databases. In the next section, we show that
from these observations, PRISM is able to accurately learn reaction probabilities.

5 Experiments

The scope of the experiments is to show empirically that on a medium-sized metabolic
pathway the learning of the probability distributions from metabolomics data is feasible
in PRISM. In order to assess the accuracy of learning the probabilities of the reactions
we adopt the following method. A probability distribution

MPP ,..,1
is initially

assigned to the clauses of the logic program so that each reaction has a probability
attached. We call these M parameters the true parameters. Then we sample from
this probability distribution S samples (observations) by launching the top goal
can_produce(Metabolites,_,Products). Once that we have these samples, we replace the
probabilities by uniformly distributed ones. At this point the built-in predicate learn of
PRISM is called in order to learn from the samples. PRISM learns M new parameters

138 M. Biba et al.

''
1 ,.., MPP , that represent the learned reaction probabilities from the observations. In

order to assess the accuracy of the learned '
iP towards Pi we use the RMSE (Root

Mean Square Error) for each experiment with S samples.

 RMSE =
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −∑
=

M

i

ii

M

PP

1

2')(

We performed experiments on two types of networks. In the first there are not
alternative branches in the metabolic pathway. It means that starting from any node in
the network there are not multiple paths to reach another node in the network. While
in the second network we add an alternative path. For each network, we have
performed different experiments with a growing number S of samples in order to
evaluate how the number of samples affects the accuracy and the learning time. For
each S we have performed 10 experiments in order to assess the standard deviation of
RMSE for different experiments with the same number of samples.

Table 1. Experiments on the 2 networks

Mean of RMSE on 10
experiments

Standard Deviation. of
RMSE on 10 experiments

Mean learning time on 10
experiments (seconds)

S – Number
of samples

Network 1 Network 2 Network 1 Network 2 Network 1 Network 2
100 0,14860 0,18080 0,00013 0,000021 0,031 0,078
200 0,13377 0,14723 0,00001 0,000041 0,078 0,094
400 0,09909 0,11796 1,5 * 10-7 0,000308 0,079 0,156
600 0,08263 0,10471 0,00001 0,000458 0,094 0,182
800 0,07766 0,08317 7,2 * 10-7 2,2 * 10-7 0,098 0,141
1000 0,07200 0,07708 0,00006 8,9 * 10-7 0,104 0,172
2000 0,06683 0,07027 0,000014 0,000686 0,118 0,194
4000 0,06442 0,06672 0,00001 2,9 * 10-7 0,140 0,204
6000 0,05667 0,05768 0,000018 0,000351 0,156 0,219
8000 0,05279 0,05306 0,000106 5,3 * 10-7 0,182 0,266

10000 0,05164 0,05231 0,000037 0,000481 0,203 0,281

As Table 1 shows, we get better results in terms of accuracy as S grows and the

learning time is very low considering that the two networks are of medium size where
Network 1 and Network 2 contain respectively 21 and 25 reactions. As RMSE
decreases we note a slight increase of the learning time. Comparing the two networks,
we can see that on the second network RMSE and the learning time are greater than
on the first network. This is due to more nodes to explore during learning as the same
node can be reached in different ways. However, the experiments show that given
metabolomics data, learning accurately reaction probabilities in PRISM is feasible.

In a related work [5], SLPs (Stochastic Logic Programs) [8] were applied to the
same problem. The advantage of our approach stands in the parameter learning phase.
Parameter estimation in SLPs [9] requires the intractable computation of a
normalizing constant. In [9] it is shown that the approach of simply enumerating
refutations in the SLD-tree is tractable only for small problems because it requires the
exploration of the entire SLD-tree of the top goal. Moreover, for parameter learning
of SLPs there have not yet been developed tabulation techniques such as in PRISM

 A Hybrid Symbolic-Statistical Approach to Modeling Metabolic Networks 139

where tabulated search greatly increases efficiency [7]. However, structure learning
for SLPs has been dealt with in [10] (in [9] the structure is supposed to be learned by
another method and it only applies the parameter estimation algorithm to the given
structure), while structure learning for PRISM programs has not been attempted.

6 Conclusion

We have applied the hybrid symbolic-statistical framework PRISM to a problem of
modeling metabolic pathways and have shown through experiments the feasibility of
learning reaction probabilities from metabolomics data for a medium-sized network.
To the best of our knowledge this is the first application of the framework PRISM to a
problem in Systems Biology. Very good probability estimation accuracy and learning
times validate the hybrid approach to a problem where both relations and uncertainty
must be handled.

As future work, we intend to investigate larger networks and the problem of model
building from observations. We believe PRISM fast learning algorithm will help in
exploring larger metabolic networks in reasonable times.

References

1. Kitano, H.: Foundations of Systems Biology. MIT Press, Redmond, Washington (2001)
2. Kriete, A., Eils, R.: Computational Systems Biology. Elsevier - Academic Press,

Amsterdam (2005)
3. Page, D., Craven, M.: Biological Applications of Multi-Relational Data Mining. Appears

in SIGKDD Explorations, special issue on Multi-Relational Data Mining (2003)
4. Bryant, C.H., Muggleton, S.H., Oliver, S.G., Kell, D.B., Reiser, P., King, R.D.: Combining

inductive logic programming, active learning and robotics to discover the function of
genes. Electronic Transactions in Artificial Intelligence 5-B1(012), 1–36 (2001)

5. Angelopoulos, N., Muggleton, S.H.: Machine learning metabolic pathway descriptions
using a probabilistic relational representation. Electronic Transactions in Artificial
Intelligence 6 (2002)

6. Sato, T., Kameya, Y., PRISM,: PRISM: A symbolic-statistical modeling language. In:
Proceedings of the 15th International Joint Conference on Artificial Intelligence, pp. 1330–
1335 (1997)

7. Sato, T., Kameya, Y.: Parameter learning of logic programs for symbolic-statistical
modeling. Journal of Artificial Intelligence Research 15, 391–454 (2001)

8. Muggleton, S.H.: Stochastic logic programs. In: de Raedt, L. (ed.) Advances in Inductive
Logic Programming, pp. 254–264. IOS Press, Amsterdam (1996)

9. Cussens, J.: Parameter estimation in stochastic logic programs. Machine Learning 44(3),
245–271 (2001)

10. Muggleton, S.H.: Learning structure and parameters of stochastic logic programs. In:
Proceedings of the 10th International Conference on Inductive Logic Programming,
Springer, Berlin (2002)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

