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Abstract. Biological systems consist of many components and interactions 
between them. In Systems Biology the principal problem is modeling complex 
biological systems and reconstructing interactions between their building 
blocks. Symbolic machine learning approaches have the power to model 
structured domains and relations among objects. However biological domains 
require uncertainty handling due to their hidden complex nature. Statistical 
machine learning approaches have the potential to model uncertainty in a robust 
manner. In this paper we apply a hybrid symbolic-statistical framework to 
modeling metabolic pathways and show through experiments that complex 
phenomenon such as biochemical reactions in cell’s metabolic networks can  be 
modeled and simulated in the proposed framework. 
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1   Introduction 

Biological systems’ behavior is determined by complex interactions between their 
building components. In Systems Biology [1] the main problem is to uncover and 
model how function and behavior of the biological machinery are implemented 
through these interactions. Since biological circuits are hard to model and simulate, 
many efforts [2] have been made to develop computational models that can handle 
their intrinsic complexity. In this paper we focus on a particular problem of Systems 
Biology that concerns the modeling of metabolic pathways. A metabolic pathway is a 
sequence of chemical reactions occurring within the cell. These reactions are 
catalyzed by enzymes which are particular proteins that convert metabolites (input 
molecules) in other molecules that represent the products of the reaction. These 
products can be stored in the cell under certain forms or can cause the initiation of 
another metabolic pathway. A metabolic network of a cell is formed by the metabolic 
pathways occurring in the cell.  

Since a reaction can happen if the input molecules are available to the catalytic 
enzyme, a modeling framework must be able to model relations among entities. 
Symbolic approaches such as logic-based techniques have the potential to model 
relations in structural complex domains and there have been a growing number of 
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biological applications of these methods [3]. First-order logic representations have 
also the advantage that models are easily comprehensible to humans. Moreover, since 
most part of biological systems performs its activity remaining hidden to the human 
modeler, machine learning techniques can play an important role in discovering latent 
phenomena. However, symbolic-only approaches suffer from the incapability of 
handling uncertainty. In models built with symbolic-only approaches, the learned 
rules are deterministic and do not incorporate any kind of mechanism for uncertainty 
modeling. On the other side, biological systems intrinsically behave in a uncertain 
fashion with many interactions probable to happen. Since cell’s life is determined by 
the most probable interactions, handling uncertainty is crucial when the cell’s 
machinery must be modeled. Statistical approaches based on the probability theory 
represent a valuable mechanism to govern uncertainty. However, observations of 
biological systems rarely reflect exactly what happens inside them. Therefore, 
estimation techniques are precious in order to model what we cannot observe. 
Statistical machine learning methods have the ability to learn probability distributions 
from observations and hence are suitable for modeling biological systems. On the 
other side, statistical-only approaches rarely are able to reason about relations and/or 
interactions among biological circuits as symbolic approaches do. Hence, there is 
strong motivation on developing and applying hybrid approaches to modeling 
biological systems.  

The paper is organized as follows. Section 2 describes the problem of modeling the 
aromatic amino acid pathway of yeast and the necessity for symbolic-statistical 
machine learning. Section 3 describes the hybrid framework PRISM. Section 4 
describes modeling of the problem in the framework PRISM. Section 5 presents 
experiments and Section 6  concludes and presents future work. 

2   Metabolic Networks 

Metabolic networks can be represented as graphs where nodes represent reactions and 
there are two kinds of arcs, those entering the node and labeled with the input 
molecules and those exiting the node and labeled with the products of the reaction. 
Fig. 1. shows part of the aromatic pathway for Yeast presented in [4]. The node 
represents the reactions made possible by the enzymes 2.5.1.19, 4.6.1.4 and 5.4.99.5 
(KEGG identifiers are used for enzymes and reactions). A possible reaction is that of 
converting the metabolites C00074 and C00008 into the products C00009 and 
C01269. Then the metabolite C01269 takes part into another reaction made possible 
by the enzyme 4.6.1.4 and so on. Such interactions can be easily expressed using a 
first-order  logic representation. For example the interactions can be expressed by the 
following predicates: 
 

enzyme(2.5.1.19, reaction_2_5_1_19, [C00074,C00008], [C00009,C01269]). 
enzyme(4.6.1.4, reaction_4_6_1_4, [C01269], [C00009,C00251]). 
enzyme(5.4.99.5, reaction_5_4_99_5, [C00251], [C00254]). 
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Fig. 1. Part of the aromatic pathway for Yeast 

However, this representation does not incorporate any further information about 
the reactions. For example, there can be competing reactions if two enzymes elaborate 
the same input metabolites and the occurring of any of the reactions determines a 
certain sequence of successive reactions instead of another. Hence, it is important to 
know which reaction among the two is more probable to happen. Moreover, input 
metabolites not always are available. Their absence can cause a certain reaction not to 
occur and give rise to another sequence in the metabolic pathway. Therefore, it is 
crucial to know how probable a certain reaction is. This situation can be modeled by 
attaching to each reaction the probability that it happens. This requires a first-order 
representation framework that can handle for each predicate that expresses a reaction 
the probability that the predicate is true.   

The simple incorporation of probabilities is not enough to model complex 
metabolic networks. The probabilities of the reactions depend on many factors, such 
as initial quantity of input metabolites, changes in the physical-chemical environment 
surrounding the cell and many more. For this reason it is a hard task to observe all the 
states of the biological machinery and try to assign probabilities to reactions. 
Therefore there is a need for machine learning methods that can learn distribution of 
probabilities from observations.  

In order to model metabolic networks, two tasks must be performed. First, a 
relational model that describes the reactions must be built. This can be constructed 
manually by the expert or learned automatically by machine learning multi-relational 
methods. Once the model has been built, the second task is the assignment of 
probabilities. In this paper we do not deal with model building. We use the metabolic 
pathway built in [4] and model this pathway in a hybrid symbolic-statistical 
framework in order to automatically learn the probabilities of the reactions. A logic 
program that describes this metabolic pathway has been given in [5]. We extend this 
logic program in order to statistically model the pathway in the framework PRISM. 
After modeling the pathway in PRISM we perform learning of probabilities and show 
through experiments the feasibility of accurately learning reactions probabilities from 
metabolomics data using PRISM. 

3   The Symbolic-Statistical Framework PRISM 

PRISM (PRogramming In Statistical Modelling) [6] is a symbolic-statistical modeling 
language that integrates logic programming with learning algorithms for probabilistic 
programs. PRISM programs are not only just a probabilistic extension of logic 
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programs but are also able to learn from examples through the EM (Expectation-
Maximization) algorithm which is built-in in the language. The parameter learning 
algorithm [7], provided by the language, is a new EM algorithm called graphical EM 
algorithm that when combined with the tabulated search has the same time 
complexity as existing EM algorithms, i.e. the Baum-Welch algorithm for HMMs 
(Hidden Markov Models), the Inside-Outside algorithm for PCFGs (Probabilistic 
Context-Free Grammars), and the one for singly connected BNs (Bayesian Networks) 
that have been developed independently in each research field. Since PRISM 
programs can be arbitrarily complex, all the  formalisms such as HMMs, PCFGs and 
BNs can be described by these programs.  

PRISM programs are defined as logic programs with a probability distribution given 
to facts that is called basic distribution. Formally a PRISM program is P = F  ⋃R where 
R is a set of logical rules working behind the observations and F is a set of facts that 
models observations’ uncertainty with a probability distribution. Through the built-in 
graphical EM algorithm the parameters (probabilities) of F are learned and through the 
rules this learned probability distribution over the facts induces a probability  
distribution over the observations. As an example, we present a hidden markov model 
with two states slightly modified from that in [7]: 

values(init,[s0,s1]).   % State  initialization 
values(out(_),[a,b]).   % Symbol emission 
values(tr(_),[s0,s1]).  % State transition        
hmm(L):-            % To observe a string L:                      
str_length(N),          % Get the string length as N  
msw(init,S),      % Choose an initial state randomly   
hmm(1,N,S,L).      % Start stochastic transition (loop) 
hmm(T,N,_,[]):- T>N,!.  % Stop the loop 
hmm(T,N,S,[Ob|Y]) :-   % Loop: state S,time  T          
msw(out(S),Ob),      % Output Ob at the state S    
msw(tr(S),Next),     % Transit from S to Next.           
T1 is T+1,         % Count up time            
hmm(T1,N,Next,Y).    % Go next (recursion) 
str_length(10).      % String length is 10 
set_params :- set_sw(init, [0.9,0.1]), set_sw(tr(s0), 
[0.2,0.8]), set_sw(tr(s1), [0.8,0.2]), 
set_sw(out(s0),[0.5,0.5]), set_sw(out(s1),[0.6,0.4]). 

The most appealing feature of PRISM is that it allows the users to use random 
switches to make probabilistic choices. A random switch has a name, a space of 
possible outcomes, and a probability distribution. In the program above, msw(init,S) 
probabilistically determines the initial state from which to start by tossing a coin. The 
predicate set_sw( init, [0.9,0.1]),  states that the probability of starting from state s0 is 
0.9 and from s1 is 0.1. The predicate learn in PRISM is used to learn from examples 
(a set of strings) the parameters (probabilities of init, out and tr) so that the ML 
(Maximum-Likelihood) is reached. For example, the learned parameters from a set of 
examples can be: switch init: s0 (0.6570), s1 (0.3429); switch out(s0): a (0.3257), b 
(0.6742); switch out(s1): a (0.7048), b (0.2951); switch tr(s0): s0 (0.2844), s1 
(0.7155); switch tr(s1): s0 (0.5703), s1 (0.4296).�After learning these ML parameters, 
we can calculate the probability of a certain observation  using the predicate prob: 
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prob(hmm([a,a,a,a,a,b,b,b,b,b]) = 0.000117528. This way, we are able to define a 
probability distribution over the strings that we observe. Therefore from the basic 
distribution we have induced a probability distribution over the observations. 

4   PRISM Modeling of Aromatic Amino Acid Pathway of Yeast 

The logic foundation of PRISM facilitates the construction of a representation of the 
metabolic pathway described in the previous section. Predicates that describe 
reactions remain unchanged from a language representation point of view. What we 
need to statistically model the metabolic pathway is the extension with random 
switches of the logic program that describes the pathway. We define for every 
reaction a random switch with its relative space outcome. For example, in the 
following we describe the random switches for the reactions in Fig. 1. 

 
values(switch_rea_2_5_1_19,[rea_2_5_1_19( yes, yes, yes, yes ),rea_2_5_1_19(yes, 
yes, no, no)]). 
values(switch_ea_4_6_1_4,[rea_4_6_1_4(yes, yes, yes),rea_4_6_1_4(yes, no, no)]). 
values(switch_rea_5_4_99_5,[rea_5_4_99_5( yes, yes ),rea_5_4_99_5(yes, no)]). 
 

For each of the three reactions there is a random switch that can take one of the 
stated values at a certain time. For example, the value rea_2_5_1_19(yes, yes, yes, 
yes) means that at a certain moment the metabolites C00074 and C00008 are present 
and the reaction occurs producing C00009 and C00251. While the other value 
rea_2_5_1_19(yes, yes, no, no) means that the input metabolites are present but the 
reaction did not occur, thus the products C00009 and C00251 are not produced. 
Below we report the PRISM program for modeling the pathway in Figure 1. (The 
complete PRISM code for the whole metabolic pathway can be requested to the 
authors).   

enzyme('2.5.1.19',rea_2_5_1_19,[C00074,C03175],[C00009,
C01269]).                         
enzyme('4.6.1.4',rea_4_6_1_4,[C01269],[C00009,C00251]). 
enzyme('5.4.99.5',rea_5_4_99_5,[C00251],[C00254] ). 
can_produce(Metabolites,Products) :-                  
can_produce(Metabolites,[],Products). 
can_produce(Metabolites,Stalled,Products) :-
(possible_reaction(Metabolites,Stalled,Name,Inputs,Outp
uts,Rest) -> 
reaction_call(Reaction,Inputs,Outputs,Call),  
rand_sw(Call,Value),                 
((Value == rea_2_5_1_19(yes,yes,yes,yes);            
Value == rea_4_6_1_4(yes,yes,yes);                  
Value == rea_5_4_99_5(yes,yes))  -> 
can_produce(Rest,Stalled,Products )                    
;                        
can_produce(Metabolites,[Reaction|Stalled],Product));                      
Products = Metabolites). 



 A Hybrid Symbolic-Statistical Approach to Modeling Metabolic Networks 137 

rand_sw(ReactAndArgs,Value):-
ReactAndArgs=..[Pred|Args],                         
(Pred == rea_2_5_1_19 ->msw(switch_rea_2_5_1_19,Value); 
(Pred == rea_4_6_1_4 ->msw(switch_rea_4_6_1_4,Value); 
(Pred == rea_5_4_99_5 -> msw(switch_rea_5_4_99_5,Value) 
;                                                  
true))). % do nothing  

In the following, we trace the execution of the program. The top goal to prove that 
represents the observations in PRISM is can_produce(Metabolites,_,Products). It will 
succeed if there is a pathway that leads from Metabolites to Products, in other words 
if there is a sequence of random choices (according to a probability distribution) that 
makes possible to prove the top goal. The predicate possible_reaction controls among 
the first three clauses of the program, if there is a possible reaction with Metabolites 
in input. Suppose that at a certain moment Metabolites = [C00074,C00008] and thus 
the reaction can happen. The variables Inputs and Outputs are bounded respectively to 
[C00074,C00008] and [C00009,C01269]. The predicate reaction_call constructs the 
body of the reaction that is the predicate Call which is in the form: rea_2_5_1_19 
( _,_,_,_ ). This means that the next predicate rand_sw will perform a random choice 
for the switch. This random choice which is made by the built-in predicate 
msw(switch_rea_2_5_1_19,Value) of PRISM, determines the next step of the 
execution, since Value can be either rea_2_5_1_19(yes, yes, yes, yes) or 
rea_2_5_1_19(yes, yes, no, no). In the first case it means the reaction has been 
probabilistically chosen to happen and the next step in the execution of the program 
which corresponds to the next reaction in the metabolic pathway is the call 
can_produce(Rest, Stalled, Products). In the second case, the random choice 
rea_2_5_1_19(yes, yes, no, no)  means that probabilistically the reaction did not occur 
and the sequence of the execution will be another, determined by the call 
can_produce(Metabolites, [Reaction|Stalled],Products).  

In order to learn the probabilities of the reactions we need a set of observations of 
the form can_produce(Metabolites,_,Products). These observations that represent 
metabolomic data, are being intensively collected through available high throughput 
instruments and stored in metabolomics databases. In the next section, we show that 
from these observations, PRISM is able to accurately learn reaction probabilities.  

5   Experiments 

The scope of the experiments is to show empirically that on a medium-sized metabolic 
pathway the learning of the probability distributions from metabolomics data is feasible 
in PRISM. In order to assess the accuracy of learning the probabilities of the reactions 
we adopt the following method. A probability distribution 

MPP ,..,1
is initially 

assigned to the clauses of the logic program so that each reaction has a probability 
attached. We call these M parameters the true parameters. Then we sample from  
this probability distribution S samples (observations) by launching the top goal 
can_produce(Metabolites,_,Products). Once that we have these samples, we replace the 
probabilities by uniformly distributed ones. At this point the built-in predicate learn of 
PRISM is called in order to learn from the samples. PRISM learns M new parameters 
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''
1 ,.., MPP , that represent the learned reaction probabilities from the observations. In 

order to assess the accuracy of the learned '
iP  towards Pi we use the RMSE (Root 

Mean Square Error) for each experiment with S samples. 
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We performed experiments on two types of networks. In the first there are not 
alternative branches in the metabolic pathway. It means that starting from any node in 
the network there are not multiple paths to reach another node in the network. While 
in the second network we add an alternative path. For each network, we have 
performed different experiments with a growing number S of samples in order to 
evaluate how the number of samples  affects the accuracy and the learning time. For 
each S we have performed 10 experiments in order to assess the standard deviation of 
RMSE for different experiments with the same number of samples.  

 

Table 1. Experiments on the 2 networks 

 

Mean of RMSE on 10 
experiments 

Standard Deviation. of 
RMSE  on 10 experiments 

Mean learning time on 10 
experiments (seconds) 

S – Number 
of  samples 

Network 1 Network 2 Network 1 Network 2 Network 1 Network 2 
100 0,14860 0,18080 0,00013 0,000021 0,031 0,078 
200 0,13377 0,14723 0,00001 0,000041 0,078 0,094 
400 0,09909 0,11796 1,5 * 10-7 0,000308 0,079 0,156 
600 0,08263 0,10471 0,00001 0,000458 0,094 0,182 
800 0,07766 0,08317 7,2  * 10-7 2,2 * 10-7 0,098 0,141 
1000 0,07200 0,07708 0,00006 8,9 * 10-7 0,104 0,172 
2000 0,06683 0,07027 0,000014 0,000686 0,118 0,194 
4000 0,06442 0,06672 0,00001 2,9 * 10-7 0,140 0,204 
6000 0,05667 0,05768 0,000018 0,000351 0,156 0,219 
8000 0,05279 0,05306 0,000106 5,3 * 10-7 0,182 0,266 

10000 0,05164 0,05231 0,000037 0,000481 0,203 0,281 

 
As Table 1 shows, we get better results in terms of accuracy as S grows and the 

learning time is very low considering that the two networks are of medium size where 
Network 1 and Network 2 contain respectively 21 and 25 reactions. As RMSE 
decreases we note a slight increase of the learning time. Comparing the two networks, 
we can see that on the second network RMSE and the learning time are greater than 
on the first network. This is due to more nodes to explore during learning as the same 
node can be reached in different ways. However, the experiments show that given 
metabolomics data, learning accurately reaction probabilities in PRISM is feasible. 

In a related work [5], SLPs (Stochastic Logic Programs) [8] were applied to the 
same problem. The advantage of our approach stands in the parameter learning phase. 
Parameter estimation in SLPs [9] requires the intractable computation of a 
normalizing constant. In [9] it is shown that the approach of simply enumerating 
refutations in the SLD-tree is tractable only for small problems because it requires the 
exploration of the entire SLD-tree of the top goal. Moreover, for parameter learning 
of SLPs there have not yet been developed tabulation techniques such as in PRISM 
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where tabulated search greatly increases efficiency [7]. However, structure learning 
for SLPs has been dealt with in [10] (in [9] the structure is supposed to be learned by 
another method and it only applies the parameter estimation algorithm to the given 
structure), while structure learning for PRISM programs has not been attempted.   

6   Conclusion 

We have applied the hybrid symbolic-statistical framework PRISM to a problem of 
modeling metabolic pathways and have shown through experiments the feasibility of 
learning reaction probabilities from metabolomics data for a medium-sized network. 
To the best of our knowledge this is the first application of the framework PRISM to a 
problem in Systems Biology. Very good probability estimation accuracy and learning 
times validate the hybrid approach to a problem where both relations and uncertainty 
must be handled.  

As future work, we intend to investigate larger networks and the problem of model 
building from observations. We believe PRISM fast learning algorithm will help in 
exploring larger metabolic networks in reasonable times. 
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