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Abstract. Multi-label classification (MLC) is a challenging task in ma-
chine learning consisting in the prediction of multiple labels associated
with a single instance. Promising approaches for MLC are those able
to capture label dependencies by learning a single probabilistic model—
differently from other competitive approaches requiring to learn many
models. The model is then exploited to compute the most probable label
configuration given the observed attributes. Cutset Networks (CNets) are
density estimators leveraging context-specific independencies providing
exact inference in polynomial time. The recently introduced Extremely
Randomized CNets (XCNets) reduce the structure learning complexity
making able to learn ensembles of XCNets outperforming state-of-the-
art density estimators. In this paper we employ XCNets for MLC by
exploiting efficient Most Probable Explanations (MPE). An experimen-
tal evaluation on real-world datasets shows how the proposed approach
is competitive w.r.t. other sophisticated methods for MLC.

Keywords: Multi-label classification; Cutset Networks; Tractable Prob-
abilistic Models.

1 Introduction

Many real world classification problems, such as image and video annotation,
functional genomics in bioinformatics, text categorization, and others [16], in-
volve multiple label classes. Multi-Label Classification (MLC) aims at learning a
mapping from an instance to a set of relevant labels. A quite common approach
to MLC is to adopt a problem transformation technique—the multi-label prob-
lem is transformed into one or more single-label problems. Binary relevance
(BR) [2,25] is a popular problem transformation method that decomposes the
MLC problem into a set of single label classification problems, learning the
classifiers independently, thus possibly losing the dependencies among the label
variables. On the contrary, as reported in [8], it is well known that exploiting
the label dependencies can significantly improve the classification performance.
For instance, the classifier chain approach (CC) [22] exploits potential label cor-
relations by transforming a MLC problem into a chain of binary classification



problems—subsequent binary classifiers in the chain are built upon the predic-
tions of preceding ones.

Density estimators like Probabilistic Graphical Models (PGMs) [13], such as
Bayesian Networks (BNs), represent a powerful formalism to model and reason
about MLC problems, since they are able to capture the conditional indepen-
dence assumptions among random variables (RVs) into a graph-based repre-
sentation. Inference routines in PGMs, such as conditional probability infer-
ence and Most Probable Explanation (MPE) inference can be exploited to solve
MLC [1,6]. In a MLC scenario, we assume to have a set of N training instances
D = {(xi,yi)}Ni=1, where each instance has a component xi as a vector of M
feature values xik ∈ R. The set L = {y1, . . . , yL} denotes the output domain of
possible labels. Each vector xi is associated to a subset Yi ⊆ L of these labels,
represented by an vector of L binary values yi = [yi1, . . . , y

i
L]. The instances

are assumed to to be i.i.d. according to a probability distribution P (X,Y). A
common way for probabilistic classifiers to tackle the MLC problem is to learn
a model h able to compute a prediction ŷ = [ŷ1, . . . , ŷL] = h(x̂) for a given
attribute instance x̂, usually solved by computing the MPE assignment for the
Y—solving ŷ = argmaxy∈{0,1}L P (y|x) = argmaxy∈{0,1}L P (y,x), where the X
is assumed to be observed as evidence.

However, learning and inference with PGMs can be challenging—computing
exact inference is an NP-Hard problem and some approximate inference routines
can be intractable in practice [23]. The need for exact and efficient inference pro-
cedures has lead to the introduction of Tractable Probabilistic Models (TPMs).
An example of TPMs are tractable PGMs, such as mixture of tree distribu-
tions [17], trading off expressiveness in exchange of tractable inference. Recent
TPMs include, among the others, Sum-Product Networks (SPNs) [19]: deep ar-
chitectures encoding probability distributions by layering hidden variables as
mixtures of independent components. Similarly, Cutset Networks (CNets), a par-
ticular kind of SPNs, have been recently proposed as easy-to-learn TPMs [21].
CNets are weighted probabilistic model trees in the form of OR-trees having
tree-structured probabilistic models as leaves, and positive weights on inner
edges. Inner nodes—conditioning OR nodes—are associated to random variables
and outgoing branches represent conditioning on the values for those variables.
Structure learning algorithmic variants for CNets have been proven to be both
accurate and scalable [11,9].

Recently, both SPNs [14] and Restricted CNets (RCNets) [12] have been
successfully applied to solve MLC problems obtaining state-of-the-art results—
learning a single model and exploiting its (exact) tractable inference routines to
obtain the correct label predictions. In order to increase the predictive accuracy
one can leverage the very well know statistical tool for robust parameter esti-
mation: bagging. However, learning an optimal single CNet is a costly operation.
Extremely Randomized CNets (XCNets) have been recently introduced in [10],
as CNets that can be learned in a simple, fast and yet effective approach by
performing random conditioning to grow the OR tree. While the likelihood of



a single XCNet is not greater than an optimally learned CNet, ensembles of
XCNets outperformed state-of-the-art density estimators.

In this work we show Extremely Randomized Restricted CNets (XRCNets)
combining RCNets and XCNets for solving MLC problems. In particular we focus
on learning ensembles of random RCNets (XRCNets), and then we prove them
to be very competitive against more sophisticated approaches like RAkEL [24],
CC [22] and SPNs based. In a thorough empirical comparison on many real-
world benchmark datasets, we show our model effectiveness under commonly
used metrics for MLC, like accuracy, Hamming and exact match scores.

2 Cutset Networks

Let RVs be denoted by upper-case letters, e.g. X, and their values as the cor-
responding lower-case letters, e.g. x. Let set of RVs be denoted by X and their
values as x. Given a set of RVs X, X\i will denote X \ {Xi}, while X|Y the
restriction of X to Y ⊆ X. Before describing the multi-label scenario, here we
assume D to be a set of N n-dimensional i.i.d. samples drawn from an unknown
joint probability distribution p(X). The primary goal is to learn a model M
from D estimating a density pM(X) as close as possible to p(X).

2.1 Tree-structured models

A directed tree-structured model [17] over a set of RVs X is a BN in which each
node Xi ∈ X has at most one parent. It is a tractable probabilistic model—
less expressive than general BNs but performing exact complete and marginal
inference in O(n) [17]—encoding a distribution that factorizes as:

p(x) =

n∏
i=1

p(xi|Paxi), (1)

where Paxi denotes the projection of the assignment x on the parent of Xi.
To learn a tree-structured model M, one has to estimate both a tree struc-

ture T and the corresponding conditional probabilities θi|PaXi = pM(Xi|PaXi).
An optimal model, according to the KL-divergence, can be obtained by employ-
ing the classical result from Chow and Liu [4]. We will refer to tree-structured
models as Chow-Liu trees, or CLtrees, assuming the Chow-Liu algorithm has
been employed to learn them. CLTrees have been employed as the core compo-
nents of many tractable probabilistic models ranging from mixtures of them [17],
SPNs [26] and CNets [21,11,9].

2.2 Cutset Networks

CNets, introduced in [21], are TPMs represented as a hybrid of OR trees and
CLTrees as the tree leaves. Their definition has been generalized to comprise
generic TPMs as leaf distributions in [10]. In particular, a CNet C over a set of
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Fig. 1. Example of a CNet over the binary RVs X1, . . . , X4, Y1, . . . , Y3. Inner nodes,
with weighted outgoing edges, on variables Xi are OR nodes, while leaf nodes—RVs
grouped in a plate—represent CLtrees.

RVs X, is a probabilistic weighted model tree defined via a rooted OR tree G and
a set of TPMs {Mi}Li=1 as leaves encoding distributions pMi

over a subset of X,
called scope and denoted as sc(Mi). The scope of a CNet C, sc(C), is the set of
RVs appearing in it. Figure 1 shows a CNet over binary RVs where each circled
node is an OR tree node labeled by a variable Xi. Outgoing edges are weighted
by the probability w0

i , resp.w1
i , of conditioning Xi to the value 0 (left), resp. 1

(right). In order to encode a probability distribution it must hold w0
i + w1

i = 1.

Definition 1 (Cutset network [10]). Given binary RVs X, a CNet is: 1)
a TPM M, with sc(M) = X; or 2) a weighted disjunction of two CNets C0
and C1 graphically represented as an OR node conditioned on RV Xi ∈ X, with
associated weights w0

i and w1
i s.t. w0

i + w1
i = 1, where sc(C0) = sc(C1) = X\i.

A CNet C encodes a distribution factorizing as follows:

p(x) = pl(x|sc(C)\sc(Ml))pMl
(x|sc(Ml)), (2)

where pl(x|sc(C)\sc(Ml)) =
∏
i(w

0
i )

1−xi(w1
i )
xi is a factor obtained by multiplying

all the weights attached to the edges of the path in the OR tree starting from
the root of C and reaching a unique leaf node l; while, pMl

(x|sc(Ml)) is the
distribution encoded by the reached leaf l.

Learning CNets. Learning the structure and parameters of a CNet from data
equals to perform searching in the space of probabilistic weighted model trees,



requiring an exponential time w.r.t. its height k. The learning problem is tackled
in a two-stage greedy fashion by: first performing a top-down search in the space
of weighted OR trees, and then learning TPMs as leaf distributions according
to a conditioned subset of the data.

In [21] has been introduced the first structure learning algorithm for CNets,
leveraging a heuristic approach to induce the OR tree and then pruning it to
overcome the overfitting. Then in [11] a new approach has been presented, grow-
ing the OR tree by a principled Bayesian search maximizing the data likelihood.
The general learning schema to learn CNets is shown in Algorithm 1. The pro-
cedure tries to select a variable Xi on the input data slice D, and if a such a
variable exists, it then recursively tries to decompose the two new slices D0 and
D1 over X\i. When the slice D has few instances, or it is defined on few variables,
then a leaf distribution is learned.

Algorithm 1 LearnCNet(D, X, α, δ, σ) [10]

1: Input: a dataset D over RVs X; α: Laplace smoothing factor; δ min number of
samples to split; σ min number of features to split

2: Output: a CNet C encoding pC(X) learned from D
3: if |D| > δ and |X| > σ then
4: Xi, success← select(D,X, α)
5: if success then
6: D0 ← {ξ ∈ D : ξ[Xi] = 0}, D1 ← {ξ ∈ D : ξ[Xi] = 1}
7: w0 ← |D0|/|D|, w1 ← |D1|/|D|
8: C ← w0 · LearnCNet(D0,X\i, α, δ, σ) + w1 · LearnCNet(D1,X\i, α, δ, σ)

9: else
10: C ← learnDistribution(D,X, α)

11: return C

The algorithm proposed in [21], performs a greedy top-down search in the
OR-trees space. It implements the select function as a procedure to determine
the RV Xi that maximizes a reformulation of the information gain from decision
tree theory. To cope with the systematic overfitting, then a post-pruning method
on a validation set is introduced. As shown in [10], growing a full binary OR tree
using this approach when learning a CNet on D over RVs X has time complexity
O(kmn2), where m = |D|, n = |X|, and k is the height of the OR tree.

The approach proposed in [11] to learn CNets exploits a different approach
from that in [21], by avoiding decision tree heuristics while choosing the best
variable directly maximizing the data log-likelihood. As already reported in [11],
the log-likelihood function of a CNet may be recursively decomposed. By exploit-
ing the recursive nature of CNets, a CNet is grown top-down, allowing further
expansion—the substitution of a CLtree with an OR node—only if it improves
the structure log-likelihood. In particular, one starts with a single CLtree, learned
from D over X, and then checks whether there is a decomposition—an OR node
on the best variable Xi applied on two CLtrees—providing a better log-likelihood



than that scored by the initial tree. If such a decomposition exists, than the de-
composition process is recursively applied to the sub-slices D0 and D1 over X\i,
testing each leaf for a possible substitution. Growing a full binary OR tree on D
over RVs X with this new proposed approach has time complexity O(kmn3).

Extremely Randomized CNets Extremely Randomized CNets (XCNets),
proposed in [10], are CNets that are built following the procedure sketched in
the Algorithm 1, where the OR split node procedure—the select function—is
simplified in the most straightforward way: selecting a RV uniformly at random.
As a consequence, the cost of the new select function does not directly depend
anymore on the number of features and can be considered to be constant. For
XCNets, growing a full binary OR tree on D over X has time complexity O(km).

Ensembles of CNets. To improve the accuracy of a single model, in [21]
CNets have been employed as components of a mixture of the form: p(X) =∑c
i=1 λiCi(X), being λi ≥ 0 :

∑c
i=1 λi = 1 the mixture coefficients. Learning

such a mixture can be obtained employing EM to alternatively learn both the
weights and the mixture components. A more efficient method to learn Mix-
tures of CNets, presented in [11], adopts bagging. For bagged CNets, mixture
coefficients are set equally probable and the mixture components can be learned
independently on different bootstrapped data samples. An approach adding ran-
dom subspace projection to bagged CNets has been introduced in [9]. While its
worst case complexity is the same as for bagging, the cost of growing the OR
tree reduced by random sub-spacing is effective in practice. Finally, mixtures
of CNets have been learned by exploiting some boosting approaches proposed
in [20], having time complexity equals to that for bagging or even worst.

3 Sum-Product Networks for MLC

Recently, in [14] has been investigated the use of SPNs for multi-label classifi-
cation, showing that SPN-based multi-label classifiers are competitive against
state-of-the-art classifiers.

Sum-Product Networks [19] are deep probabilistic-models that have obtained
impressive results in many tasks. An SPN represents a probability distribution
over a set of random variables by a rooted directed-acyclic graph with tractable
distributions as leaves, sums and products as inner nodes and weighted edges. In
order to deal with MLC different approaches have been proposed in [14]. The two
most effective ones that we are reporting here are one based on MPE inference
and the other on pool of sequential classification.

In particular, since learning an SPN is a costly operation—differently from
learning an XCNet—the general approach is to learn a single SPN S from the
whole training set D, using a structure learner algorithm such as those reported
in [26,15], and then perform the classification on an instance x̂ by solving:

ŷ = argmaxyPS(y|x).



The first approach (SPNmpe) solves the problem, as done in [12] for CNets,
by computing the MPE inference as proposed in [19]. However, differently from
CNets computing exact MPE in SPNs is NP-hard in general [18,5]. Being the
adopted MPE inference approximate, in order to improve the quality of the
predictions another approach (SPNpsc) inspired by the classifier chain [22] one
has been proposed. Let θ be an ordering of the labels, then the θj-th label could
be predicted by solving:

yθj = argmax
yθj

PS(Yk = 1|x, yθ1 , . . . , yθj−1
).

Instead of fixing a single ordering, SPNpsc uses an ensemble approach, by con-
sidering a set of label orderings {θ1, . . . , θk}, and then computing the set CC =
{(yi1, . . . , yiL)}ki=1 of classifications obtained for each order. Finally, a method
to aggregate the results for producing the single prediction is adopted such as
majority voting: yj = 1 iff 1/k

∑k
i=1 y

i
j ≥ 0.5.

4 Cutset Networks for MLC

We start to explain how to exploit CNets for MLC as reported in [12], where
Restricted CNets have been introduced. As already stated in the introduction, in
MLC we assume to have a set of N training instances D = {(xi,yi)}Ni=1, where
each instance has a component xi as a vector of M feature values xik ∈ R. We
assume the instances to be i.i.d. according to a probability distribution P (X,Y).
We want to learn a model h able to compute a prediction ŷ for a given attribute
instance x̂: ŷ = [ŷ1, . . . , ŷL] = h(x̂) = argmaxy∈{0,1}L P (x̂,y).

CNets tackle the MLC problem computing the MPE assignment for the Y—
solving ŷ = argmaxy∈{0,1}L P (y|x). As showed in [12], differently from SPNs,
even MPE queries can be answered in time linear to the size of the network. Af-
ter having computed the MPE assignment for each leaf node, one can continue
visiting all the OR nodes up to the root, obtaining a complete assignment. The
leaf node MPE assignment associated to their scope can be computed by em-
ploying the max-out variant of the Variable Elimination Algorithm—guaranteed
to be linear in the size of the trees [13].

4.1 Restricted CNets

Probabilistic multi-label classifiers can be learned by optimizing one particular
loss function, trying to elicit the marginal (resp. conditional) label dependencies
if they focus on modeling p(Y) (resp. p(Y|X)) [8]. The approach proposed in [12]
consists in learning a CNet while optimizing the joint likelihood, but guiding
the structure learning algorithm to focus on the label dependence relationships.
This has been obtained by i) limiting the OR split tests to be taken on the X
variables only while growing a CNet, and by ii) constraining both label variables
and feature variables in the BNs in the leaves to have as a parent a label variable.
This leads to particular networks called Restricted CNets (RCNets). The former



constraint forces the Y to be strictly dependent from the X appearing in the
internal nodes, helping the Chow-Liu algorithm to better focus on the Y variable
interactions. The CNet in Figure 1 is an RCNet as well, since label variables
are represented only in the leaves. The latter constraint implies that features
variables shall be independent given the label variables. In this way the algorithm
is forced to model the dependencies among the class variables, and giving the
feature to independently contribute in the MPE inference evaluation.

4.2 Extremely Randomized Restricted CNets

Here, in order to improve the classification results for a multi-label classification
problem we combine the Extremely Randomized CNets (XCNet) and the Re-
stricted CNets leading to Extremely Randomized Restricted CNets (XRCNets).
Since the score of a single XCNet is lesser than that obtained with a regular
CNet, due to its random process, we learned a mixture of XCNets adopting bag-
ging. However, while for a single CNet the MPE inference is exact, for ensemble
of CNets this in not longer true, like for SPNs—being the mixture modeled as a
sum node over k models, where k is the number of the components. Hence, we
have to use a kind of approximate MPE inference.

In particular, let k be the number of XRCNets used to build the mixture
model. Given a test instance x̂, each XRCNet in the mixture can be queried to
compute an exact MPE assignment ŷi = [ŷi1, . . . , ŷiL], i = 1, . . . , k. Then, the
final prediction ŷ for the instance x̂ can be computed using a simple aggregation
function as follows:

ŷ =

[
1

(
k∑
i=1

ŷi1 > L/2

)
, . . . ,1

(
k∑
i=1

ŷiL > L/2

)]
.

Other more sophisticated approaches to better approximate the exact MPE as-
signment for mixtures of CNets deserves a further study.

5 Experimental Results

Here we detail the performance evaluation metrics, the datasets, the algorithms
and their experimental settings. The source code of our algorithm and all the
scripts to reproduce the experiments reported in this paper are made publicly
available4.

5.1 Evaluation Metrics and Datasets

Given a multi-label dataset consisting of N multi-label instances (xi,yi)
N
i=1,

where each yi is a vector of L binary values yi ∈ {0, 1}L. Let h a multi-label
classifier and ŷi = h(xi) ∈ {0, 1}L be the set of label memberships predicted by h

4 https://github.com/nicoladimauro/mlxcnet.

https://github.com/nicoladimauro/mlxcnet


Domain M N L LCard LDens LDist

Arts-Yahoo Text 500 7484 26 1.653 0.063 599
Business-Yahoo Text 500 11214 30 1.598 0.053 233
CAL500 Music 68 502 174 26.043 0.149 502
Emotions Music 72 593 6 1.868 0.311 27
Flags Images 19 194 7 3.391 0.484 54
Health-Yahoo Text 500 9205 32 1.644 0.051 335
Human Biology 440 3106 14 1.185 0.084 85
Plant Biology 440 978 12 1.078 0.089 32
Scene Images 294 2407 6 1.073 0.178 15
Yeast Biology 103 2417 14 4.237 0.302 198

Table 1. Datasets: number of attributes (M), instances (N), and labels (L).

for the instance xi. In order to assess the classifier performance, different metrics
focus on different dependency relationships among the labels, and are better op-
timized by taking into account those dependencies [8]. We employ three different
metrics to assess the performance of the considered models, namely: accuracy

score = 1
N

∑N
i=1

|yi∧ŷi|
|yi∨ŷi| , Hamming score = 1

NL

∑N
i=1

∑L
j=1 1(yij = ŷij), and ex-

act match score = 1
N

∑N
i=1 1(yi = ŷi), where 1(C) is the indicator function,

while ∧ and ∨ are the bitwise logical AND and OR operations, respectively [16],
applied vector-wise. The accuracy score is a label set-based measure defined by
the Jaccard similarity coefficients between the predicted and true set of labels.
The Hamming score rewards methods for predicting individual labels well, while
the exact match score computes the percentage of instances whose predicted set
of labels ŷ matches the true set of labels y exactly.

We considered 10 numerical traditional multi-label datasets—accessible from
the MULAN5, MEKA6, and LABIC7 websites—belonging to a wide variety of
application domains with their labels ranging from 6 to 174, the number of at-
tributes ranging from 19 to 500, and the number of examples ranging from 194
to 11214. Table 1 reports the information about the adopted datasets, where
M , N and L represent the number of attributes, instances, and possible la-
bels respectively. Furthermore, for each dataset D the following statistics are
also reported: Label Cardinality : LCard(D) = 1

N

∑N
i=1

∑L
j=1 y

i
j , Label Density :

LDens(D) = LCard(S)
L and Distinct Labels: LDist(D) = |{y|∃(x,y) ∈ D}|.

As reported in [12], we discretized all the numeric features for each dataset
implementing the Label-Attribute Interdependence Maximization (LAIM) [3]
discretization method for multi-label data. All the algorithms have been ran on
the datasets preprocessed by LAIM.

5 http://mulan.sourceforge.net/.
6 http://meka.sourceforge.net/.
7 http://computer.njnu.edu.cn/Lab/LABIC/LABIC_Software.html.

http://mulan.sourceforge.net/
http://meka.sourceforge.net/
http://computer.njnu.edu.cn/Lab/LABIC/LABIC_Software.html


CNets competitors

dataset XRCN RCN SPNpsc SPNmpe RAkEL CC

arts 0.429 0.425 0.334↑ 0.379↑ 0.293↑ 0.402↑
business 0.720 0.728 0.732↓ 0.720 0.729 0.729
cal 0.172 0.184 0.220↓ 0.217↓ 0.001↑ 0.199↓
emotions 0.584 0.524 0.586 0.555↑ 0.532↑ 0.493↑
flags 0.548 0.544 0.537 0.541 0.576 0.554
health 0.586 0.609 0.627↓ 0.619↓ 0.560↑ 0.616↓
human 0.330 0.335 0.180↑ 0.209↑ 0.276↑ 0.318
plants 0.337 0.322 0.146↑ 0.218↑ 0.301↑ 0.298↑
scene 0.705 0.680 0.682↑ 0.634↑ 0.687 0.606↑
yeast 0.471 0.441 0.472 0.459 0.508↓ 0.444↑

↑ / ↓ 4/3 5/2 6/1 5/2

Avrg score 0.488 0.479 0.452 0.455 0.446 0.466

Table 2. Accuracy scores of CNets and the competitors on the ten datasets.

5.2 Algorithms

For the experimental evaluation, we compared both RCNets (RCN) and an en-
semble of 10 XRCNets (XRCN)8, to different algorithms. First, we include in
the comparison the RAndom k-labELsets (RAkEL) algorithm [24], an ensemble
method for multi-label classification that constructs each member of the ensem-
ble by considering a small random subset of labels and learning a single-label
classifier for the prediction of each element in the powerset of this subset. An-
other competitive algorithm included is Classifier Chains (CC) [22], a chaining
method that can model label correlations while maintaining acceptable com-
putational complexity. Both RAkEL and CC have been run using their openly
available implementations in MEKA9 (release 1.9.2), with parameters set as de-
fault values10.

Finally, we included the two algorithms based on SPNs [14], SPNmpe and
SPNpsc

11. After having learned an SPN on the training dataset (xi,yi), SPNmpe

performs classification on an instance x by computing the approiximate MPE
argmaxyP (y|x), while SPNpsc combines by majority voting the predictions of an
ensemble of sequential classifications.

All experiments have been run on a 8-core Intel Xeon E5-1620 @3.5 GHz
with 16Gb of RAM and Linux kernel 4.4.0-59.

8 Both have be run with -d 0.1, leaving all the other parameters set to default value.
9 Available at http://meka.sourceforge.net.

10 RAkEL, resp. CC, has been executed with Support Vector Machines with polynomial
kernel, resp. with C4.5 decision trees, as base classifier.

11 We executed the code avalible at https://github.com/giulianavll/MLC-SPN to
reproduce the results reported in this paper. The algorithm used for learning the
structure of SPNs corresponds to that reported in [26].

http://meka.sourceforge.net
https://github.com/giulianavll/MLC-SPN


CNets competitors

dataset XRCN RCN SPNpsc SPNmpe RAkEL CC

arts 0.939 0.937 0.945↓ 0.942↓ 0.947↓ 0.936↑
business 0.972 0.974 0.976↓ 0.975↓ 0.976↓ 0.975↓
cal 0.860 0.854 0.856↑ 0.833↑ 0.850↑ 0.845↑
emotions 0.811 0.770 0.799 0.783↑ 0.773↑ 0.748↑
flags 0.707 0.701 0.689 0.697 0.714 0.705
health 0.963 0.966 0.969↓ 0.968↓ 0.965↓ 0.967↓
human 0.914 0.890 0.917↓ 0.912↑ 0.886↑ 0.890↑
plants 0.913 0.881 0.910 0.899 0.870↑ 0.884↑
scene 0.902 0.882 0.903 0.892 0.895 0.863↑
yeast 0.790 0.753 0.770↑ 0.757↑ 0.779↑ 0.752↑

↑ / ↓ 2/4 4/3 5/3 7/2

Avrg score 0.877 0.861 0.873 0.866 0.865 0.857

Table 3. Hamming scores of CNets and the competitors on the ten datasets.

5.3 Results and discussion

The results over a 10-fold cross validation for each evaluation metric and for
each classification algorithm on all the datasets are reported in Table 2 for the
accuracy score, Table 3 for the Hamming score, and Table 4 for the exact match
score. In order to assess whether the differences of the scores reported in Table 2,
3 and 4 are statistically significant, a t-test has been adopted comparing the
means with a significance level p = 0.05. In each column of the tables, a ↑ (resp.
↓) denotes that XRCN (resp. the competitor) outperforms the competitor (resp.
XRCN) with a difference statistically significant.

First of all, as we can see, the ensemble of XRCNets obtains on average
scores better that those obtained with a single RCNet, proving the validity of
the ensemble approach—even if each components of the ensemble are learned
completely at random, their aggregation provides more precise predictions when
compared to a single RCNet. Furthermore, for each metric the average score
over all the datasets is always greater than that obtained by other competitors.

As regards the accuracy score, XRCN obtains better results when compared
to all the competitors, while for the Hamming and exact match scores the val-
ues seems to be comparable to that of SPNpsc. Indeed, XRCN outperforms the
competitors in 6 (RAkEL), 5 (SPNmpe and CC), and 4 (SPNpsc) in terms of the
accuracy score. In terms of the Hamming score, XRCN is superior to the others
in 7 (CC), 5 (RAkEL), 4 (SPNmpe), and 2 (SPNpcs) cases. Regarding the exact
match score, XRCN is superior to the competitors in 5 (RAkEL), 3 (SPNpsc and
CC), and 2 (SPNmpe) cases.

It is important to note that, even if we used a fixed inference procedure, i.e.
MPE, it is robust for each score. Indeed, as reported in [7], MPE inference is
maximizer of the exact match score, while marginal inference for each label is a
maximizer for the Hamming score.



CNets competitors

dataset XRCN RCN SPNpsc SPNmpe RAkEL CC

arts 0.304 0.327 0.278↑ 0.309 0.222↑ 0.319
business 0.558 0.571 0.584↓ 0.570↓ 0.570 0.575
cal 0.000 0.000 0.000 0.000 0.000 0.000
emotions 0.336 0.246 0.352 0.325 0.260↑ 0.265↑
flags 0.155 0.140 0.139 0.144 0.170 0.170
health 0.436 0.473 0.514↓ 0.504↓ 0.387↑ 0.496↓
human 0.275 0.251 0.161↑ 0.186↑ 0.176↑ 0.254
plants 0.316 0.292 0.139↑ 0.207↑ 0.183↑ 0.267↑
scene 0.612 0.569 0.644↓ 0.599 0.589 0.561↑
yeast 0.147 0.138 0.160 0.158 0.141 0.156

↑ / ↓ 3/3 2/2 5/0 3/1

Avrg score 0.314 0.301 0.297 0.300 0.270 0.306

Table 4. Exact match scores of CNets and the competitors on the ten datasets.

Overall, while XRCN outperforms problem transformation schemes such a
RAkEL and CC, it is competitive with respect to the approaches based on SPNs
for the Hamming and exact match scores and outperforming them for the accu-
racy score. Adopting sophisticated schemes to infer the correct label predictions
such those used in SPNpsc represent an interesting future work.

6 Conclusion

In this paper, we employed the recently introduced tractable probabilistic model
XCNets to tackle the MLC problem. XCNets reduce the structure learning com-
plexity making able to learn ensembles of XCNets outperforming state-of-the-art
density estimators. The experimental evaluation on real-world datasets showed
how our approach can effectively improve the accuracy, exact match and Ham-
ming scores, proving itself to be highly competitive against complex approaches.
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