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Abstract

Paper citation networks are a traditional social medium for the exchange of ideas and knowledge. In this paper we use citation

networks as a mean to assess both the importance of the citations of a paper and to identify relevant papers. We addressed these

problems by modeling the citation network with a probabilistic graph useful to infer unknown links among the nodes representing

papers. The proposed approach has been evaluated on three real world citation network whose results proved its validity.
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1. Introduction

The study of networked data, including social networks, biological networks and information networks, is one

of the major topic in the current scientific research in Computer Science. Recently there is a growing trend in the

study of various types of scholarly networks, wherein a node usually denotes an academic entity, such as an article, a

journal, or an author, and links usually denote relationships such as citation, co-authorship, co-citation, bibliographic

coupling, or co-word. Google, for instance, recently introduced1 the Scholar Updates tool, that analyzes the articles

identified in a Scholar profile to propose new articles relevant to them by using a statistical model that incorporates

also the citation graph between articles.

The need to have automatic tools for searching highly related publications in terms of research fields and topics

is due to the difficulty of researchers to follow the rapid growth of a scientific research field. Literature search tools

allow users to find relevant paper using key-word-based approaches that, however, return thousands or millions of

relevant papers, making difficult for a researcher to concentrate on those publications closely related to his research.

The focus of this paper are the citation networks, networks of references among documents that can be modeled

as a graph. Each node represents a paper of the network and there is a direct link from a paper x to a paper y whether

the paper x cites the paper y. In particular, in this paper we use the citation networks as a mean to assess both the
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relevance of the citations of a paper and to identify similar papers. We addressed these problems by modeling the

citation network with a probabilistic graph useful to infer unknown links.

Probabilistic graphs is an important research topic emerged in the last few years, connected with that of Statistical

Relational Learning1, that extends the graph structures with uncertainty2,3,4,5,6. With a probabilistic graph one can

model structured domain, as with the classical graph structure, but with the advantage to also handle uncertain data.

Uncertainty is modeled by means of probabilistic edges whose value quantifies the likelihood of the edge existence,

or the strength of the link between the nodes it connects. Here the edges are not assumed to absolutely exist, but,

adopting the possible world semantics, they may exist according to their own probability. Since we have to deal with

probabilistic edges, then arises the problem of transposing the tasks in classical graph structure to this probabilistic

setting.

As we will see later, the use of probabilistic graphs give us the possibility to solve the problem of link prediction7,

whose task may be formalized as follows. Given a networked structure (V, E) made up of a set of data instances V
and a set of observed links E among some nodes in V , the task corresponds to predict how likely should exist an

unobserved link between two nodes. In a bibliographic citation context unobserved link should correspond to possible

citations or similarities among papers.

Two long-established different citation relations currently used to compute similarity between papers are the bibli-
ographic coupling (BC), originally proposed in8, and the co-citation (CC), proposed in9. The aim of BC is to identify,

within a set of publications, groups that share a common intellectual background. The bibliographic coupling between

two papers corresponds to the number of common citations, while a co-citation between two papers represents the

number of articles that cite both. The former relationship is backward-based (i.e., it needs information lying in the

past) and static (i.e., its value cannot change over time), while the latter is forward-based (i.e., two papers have to be

cited by other authors to properly compute the similarity, and hence it could be inappropriate for recent papers).

Both BC and CC use only the information embedded in the reference list of each paper neglecting the networked

information of a citation graph. For instance, two paper may be not related by a BC relationships but they could be

strongly related if their local sub-networks have a lot in common. This consideration have just been explored in10,

where the authors present link-based similarity estimation methods on a citation graph based on connectivity alone to

asses the relatedness between scientific papers.

The growing interest in predicting relevant papers using the citation graph is showed by the number of recent pub-

lications10,11,12,13. The key difference of this paper with respect to that of10 is that we enrich the citation graph with

bibliographic coupling relationships obtaining a more complex relational network that can be modeled as a proba-

bilistic graph. In particular, we have certain directed edges connecting a paper x that cites a paper y and probabilistic

symmetric edges between papers that are bibliographically coupled, whose probability denotes their relatedness.11

proposes a supervised machine learning approach, based on some papers information such as authors, topics, target

publication venues and publication time, to solve the citation prediction problem (i.e., predicting the citation relation-

ship between a query paper and a set of previous papers). 12 proposes a supervised approach to classify the citation

relation between papers. Both11 and12 need context information that in the general case is not available. Our pro-

posed approach only uses the structural information of the citation graph without exploiting other natural language

processing technique to assess similarities among the papers.

The paper is organized as follows. Section 2 introduces the basics of probabilistic graphs as in5,6. Section 3

presents the validation of the proposed method on three real world citation graph. Finally, Section 4 concludes the

paper.

2. Probabilistic Graphs

Let G = (V, E), be a graph where V is a collection of nodes and E ⊆ V × V is the set of edges, or relationships,

between the nodes.

Definition 2.1 (Probabilistic graph). A probabilistic graph is a system G = (V, E, Σ, lV , lE , s, t, p), where (V, E) is an

directed graph, V is the set of nodes, E is the set of ordered pairs of nodes where e=(s,t), Σ is a set of labels, lV : V → Σ
is a function assigning labels to nodes, lE : E → Σ is a function assigning labels to the edges, s : E → V is a function

returning the source node of an edge, t : E → V is a function returning the target node of an edge, p : E → [0, 1] is a

function assigning existence probability values to the edges.
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The existence probability p(a) of an edge a = (u, v) ∈ E is the probability that the edge a, connecting the node u to

the node v, can exist in the graph. A particular case of probabilistic graph is the discrete graph2, where binary edges

between nodes represent the presence or absence of a relationship between them, i.e., the existence probability value

on all observed edges is 1.

The possible world semantics, specifying a probability distribution on discrete graphs and formalized in the dis-
tribution semantics of Sato14 for the first order logic, is usually used for probabilistic graphs. We can imagine a

probabilistic graph G as a sampler of worlds, where each world is an instance of G. A discrete graph G′ is sampled

from G according to the probability distribution P, denoted as G′ � G, when each edge a ∈ E is selected to be an edge

of G′ with probability p(a). Edges labeled with probabilities are treated as mutually independent random variables

indicating whether or not the corresponding edge belongs to a discrete graph.

Assuming independence among edges, the probability distribution over discrete graphs G′ = (V, E′) � G = (V, E)

is given by

P(G′|G) =
∏

a∈E′
p(a)

∏

a∈E\E′
(1 − p(a)). (1)

Definition 2.2 (Simple path). Given an uncertain graph G, a simple path of length k from u to v in G is a sequence

of edges denoted as π = 〈e1, e2, . . . ek〉, where e1 = (u, v1), ek = (vk−1, v), and ei = (vi−1, vi) for 1 < i < k − 1, or

equivalently as π = u
e1−→ v1

e2−→ v2 · · · vk−1

ek−→ v.

Given an uncertain graph G, and π = 〈e1, e2, . . . ek〉 a path in G from the node u to the node v, �(π) = lE(e1)l(e2) · · · l(ek)

denotes the ordered concatenation of the labels of all the edges belonging π. As in6, we adopt a regular expression R

to denote what is the exact sequence of the labels that the path must contain.

Definition 2.3 (Language-constrained simple path). Given a probabilistic graph G and a regular expression R, a

language constrained simple path is a simple path π such that �(π) ∈ L(R), where L(R) is the language described by R.

2.1. Inference

Given a probabilistic graph G, a main task corresponds to compute the probability that there exists a simple path

between two nodes u and v, that is, querying for the probability that a randomly sampled discrete graph contains a

simple path between u and v. More formally, the existence probability P(π|G) of a simple path π in a probabilistic

graph G corresponds to the marginal P((π,G′)|G) with respect to π:

P(π|G) =
∑

G′�G

1{π ∈ G′} · P(G′|G), (2)

where 1{π ∈ G′} = 1 if there exits the simple path π in G′, and 1{π ∈ G′} = 0 otherwise. In other words, the existence

probability of the simple path π is the probability that the simple path π exists in a randomly sampled discrete graph.

Definition 2.4 (Language-constrained simple path probability). Given a probabilistic graph G and a regular expres-
sion R, the probability of a language-constrained simple path π is

P(π|G, R) =
∑

G′�G

1{π ∈ G′|R} · P(G′|G), (3)

where 1{π ∈ G′|R} = 1 if there exists a simple path π in G′ such that �(π) ∈ L(R), and 1{π ∈ G′|R} = 0 otherwise.

The previous definition give us the possibility to compute the probability of a set of simple path queries, or patterns,

fulfilling the structure imposed by a regular expression, as in6. In this way we are interested in discrete graphs that

contain at least one simple path belonging to the language denoted by the regular expression.

Computing the existence probability directly using (2) or (3) is intensive and intractable for large graphs since the

number of discrete graphs to be checked is exponential in the number of probabilistic edges. It involves computing

the existence of the simple path in every discrete graph and accumulating their probability.

2 Sometimes called certain graph.
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HEP-TH HEP-PH PATENTS

Nodes 27, 770 34,546 3,774,768

Edges 352,807 421,578 16,518,948

Table 1. Statistics of the HEP-PH, HEP-TH and PATENTS datasets.

A natural way to overcome the intractability of computing the existence probability of a simple path is to approxi-

mate it using a Monte Carlo sampling approach15:

1. we sample n possible discrete graphs, G1,G2, . . .Gn from G by sampling edges uniformly at random according

to their edge probabilities; and

2. we check if the simple path exists in each sampled graph Gi.

This process provides the following basic sampling estimator for P(π|G):

P(π|G) ≈ ̂P(π|G) =

∑n
i=1 1{π ∈ Gi}

n
. (4)

Note that is not necessary to sample all the edges to check whether the graph contains the path. For instance,

assuming to use an iterative depth first search (DFS) procedure to check the path existence. When a node is just

visited, we will sample all its adjacent edges and pushing them into the stack used by the iterative procedure. We will

stop the procedure either when the target node is reached or when the stack is empty (non existence).

Algorithm 1 reports the algorithm to solve the inference step. The function sampledAsTrue implements a mem-

oization technique in order to sample the edges. If the function is called for the first time on a given edge e, then

it sample the edge and returns true whether the edge has been sampled as true and false otherwise. All successive

calls on the same already sampled edge consist in returning the previous sampled value. The algorithm corresponds

to a DFS starting from the node u and ending to the node v if possible. If the search ends in v a positive count is

accumulated. Then the estimated probability is computed by dividing the accumulated positive count by the number

of samplings n.

Given a probabilistic graph G with d the mean degree of its node, and k the length of a path π, then the complexity

of the Algorithm 1 is O(pdk), where p is the mean probability of the edges.

3. Experimental evaluation

In order to evaluate our proposed approach we used three publicly available datasets16,17: the arXiv High Energy

Physics Teory (HEP-TH) dataset3, the Arxiv High Energy Physics Phenomenology (HEP-PH) dataset4, both originally

released as part of KDD Cup 2003 competition5, and the U.S. patent (PATENTS) dataset6. Table 1 reports the statistics

of the three citation graphs we used.

HEP-TH (resp., HEP-PH) is a citation graph from the e-print arXiv, covering all the citations within a dataset of

27, 770 (resp., 34, 546) papers with 352, 807 (resp., 421, 578) edges. If a paper i cites a paper j, the graph contains a

directed edge from i to j. If a paper cites, or is cited by, a paper outside the dataset, the graph does not contain any

information about this. The data for both HEP-TH and HEP-PH covers papers in the period from January 1993 to

April 2003 (124 months). It begins within a few months of the inception of the arXiv, and thus represents essentially

the complete history of its HEP-TH and HEP-PH sections.

The U.S. patent dataset is maintained by the National Bureau of Economic Research7. The data set spans 37

years (January 1, 1963 to December 30, 1999), and includes all the utility patents granted during that period, totaling

3 http://snap.stanford.edu/data/cit-HepTh.html
4 http://snap.stanford.edu/data/cit-HepPh.html
5 http://www.cs.cornell.edu/projects/kddcup/index.html
6 http://snap.stanford.edu/data/cit-Patents.html
7 http://www.nber.org/patents/



72   Teresa M.A. Basile et al.  /  Procedia Computer Science   38  ( 2014 )  68 – 75 

Algorithm 1 INFER(G, π, R, n)

Input: G: the probabilistic graph; π: the path u
e1−→ v1

e2−→ v2 · · · vk−1

ek−→ v; R: the regular expression; n: the number

of samplings;

Output: ̂P(π|G, R)

1: c = 0

2: for i = 1 to n do
3: visited = { u }
4: S.clear()
5: sampler.clear()
6: depth = 1

7: prevNode[0] = u
8: proven = false
9: for all adjacent node a j of the node u do

10: S.push((a j,depth))

11: while not S.empty() and not proven do
12: (a, depth) = S.top()
13: S.pop()
14: e = (prevNode[depth-1],a)

15: prevNode[depth] = a
16: if a � visited and �(e) == edepth then
17: sampled = sampledAsTrue(e, sampler)
18: if depth == k then
19: c++
20: proven = true
21: visited.add(a)

22: for all adjacent node a′j of the node a do
23: S.push((a′j,depth+1))

24: return c/n

3, 923, 922 patents. The citation graph includes all citations made by patents granted between 1975 and 1999, totaling

16, 522, 438 citations.

3.1. Probabilistic graph construction

The considered HEP-TH, HEP-PH and PATENTS citation graph does not contain probabilistic edges, the proba-

bility of the citation edges here are set to 1. In order to apply the proposed method, we enriched the original graph

by adding bibliographic coupling relationships, with their probabilistic value, among the papers in the following way.

For each pair of papers a and b of the dataset we computed their coupling strength using the Pianka’s index18:

pab =
Ca ∩Cb

(CaCb)1/2
, (5)

where Ca and Cb are, respectively, the citations of the paper a and b. If the coupling strength is greater than zero we

add a probabilistic edge between a and b with probability equal to pab.

Hence the citation graph contains node denoting specific papers (paperi), the citation links connecting two papers

(paperi
cite−−−→ paper j), and the mutual links connecting two paper with a positive coupling strength (paperi

coupling←−−−−−→
paper j).

Once have constructed the probabilistic graph G, in order to predict the existence probability of a link between two

papers the following regular expressions have been used:

R1 = {cite1, coupling1}
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Dataset papers citations nodes edges cite coupling

HEP-TH 76 17.0 2,005.4 12,310.3 24.1% 75.9%

HEP-PH 35 16.9 3,439.9 22,654.9 32.3% 67.7%

PATENTS 100 16.5 1,787.6 504,193.0 44.8% 55.2%

Table 2. Statistics of the selected paper from the HEP-TH, HEP-PH and PATENTS datasets.

and

R2 = {coupling1, cite1},
corresponding, respectively to use the simple path π1 = paperi

cite−−−→ paper j
coupling−−−−−−−→ paperk and π2 = paperi

coupling−−−−−−−→ paper j
cite−−−→ paperk. The link, in this case indicating that the two paper are similar, is predicted to exist

with a given probability by solving the inference step P(πi|Ri,G) over the probabilistic graph. In particular, given two

paper a and b, if the probability P(π1|R1,G) = P(a
cite−−−→ paper j

coupling−−−−−−−→ b|R1,G) is very high we could assume that

the paper b is highly relevant for the paper a, and viceversa.

The first path π1 is useful to assess only the relevance of the cited papers, since, given a starting paper, the first step

is to reach one of its cited papers. In particular, given a paper a, the relevance of a cited paper b is computed by seeing

how the other cited papers are bibliographically coupled with respect to b.

By using the second path π2, we are able to compute the relevance of both cited and other non cited papers. Given

a paper a, the relevance of a non cited paper b is computed by seeing whether the other bibliographically coupled

papers cite b. More complex paths may be used to inspect more in depth the neighborhood of a paper.

3.2. Results

Among all the papers contained in the datasets HEP-TH and HEP-PH we chosen to validate the approach only

those of the year 2002 having an number of citation belonging to the interval [15,19] and with a corresponding sub-

network (the considered paper, its cited papers, the bibliographically coupled papers and their citations) having a

number of nodes lesser than 5000, thus leading to consider 76 papers for HEP-TH and 35 papers for HEP-PH. While

for the patents dataset we randomly chosen 100 patents having an number of citation belonging to the interval [15,19]

and with a corresponding sub-network having a number of nodes lesser than 5000.

Table 2 reports some statistics about the considered papers whose citations are 17, 16.9 and 16.5 on average,

respectively for the HEP-TH, HEP-PH and PATENTS dataset. Each local subnetwork regarding a paper contains

2, 005.4 (resp., 3, 439.9 and 1, 787.6) nodes and 12, 310.3 (resp., 22, 654.9 and 504, 193) edges on average for the

HEP-TH (resp., HEP-PH and PATENTS) dataset; among all the edges 24.1% (resp., 32.3% and 44.8%) are citation

links and 75.9% (resp., 67.7% and 55.2%) corresponds to bibliographic coupling relationships for the HEP-TH (resp.,

HEP-PH and PATENTS) dataset.

Table 3 reports the citations of the paper titled “Null string evolution in black hole and cosmological spacetimes”

by M.P. Dabrowski and I.Prochnicka, ranked by using the two different paths π1 and π2, where the authors discuss

the problem of the motion of classical strings in some black hole and cosmological spacetimes. Rankings obtained by

following the paths of the kind π2 seem to be better that those obtained with the path π1, i.e., checking the relevance

of a paper by looking how bibliographically coupled papers cite it is more effective than verifying how other cited

papers are bibliographically coupled with it.

In order to evaluate the accuracy of the proposed approach we tested how the results returned making inference

over the probabilistic citation graph are relevant with respect to a given paper.

Given Cp the set of bibliographically coupled papers of a given paper p, in this experiment we used the path π2

to find: a) relevant papers to p but not bibliographically coupled with it (πa
2
), and b) relevant papers to p that are

bibliographically coupled with it (πb
2
). For instance in the HEP-TH dataset, each paper is on average bibliographically

coupled with 99.7 other papers, and from these papers we can reach on average, by citation, 840.1 other papers.

Hence, starting from the node p, using the path πa
2

(resp., πb
2
) we reach one of its bibliographically coupled paper that

does not cite (resp., cites) a paper that is bibliographically coupled with p. All the possible nodes that can be reached

with this path (939.8 on average) are tested for relevance and ranked according to their probability.
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π2 π1 Title

1.0 0.0 Strings in Cosmological and Black Hole Backgrounds: Ring Solutions

(1993)

1.0 0.365 Circular String-Instabilities in Curved Spacetime (1993)

1.0 0.884 Strings Propagating in the 2+1 Dimensional Black Hole Anti de Sitter

Spacetime (1994)

1.0 0.982 New Classes of Exact Multi-String Solutions in Curved Spacetimes
(1995)

1.0 0.0 Friedmann Universes and Exact Solutions in String Cosmology (1995)

0.999 0.994 Small E8 Instantons and Tensionless Non-critical Strings (1996)

0.997 0.34 Schild’s Null Strings in Flat and Curved Backgrounds (1995)

0.997 0.91 Tension as a Perturbative Parameter in Non–Linear String Equations in

Curved Space-Time (1996)

0.996 0.966 Planetoid String Solutions in 3 + 1 Axisymmetric Spacetimes (1996)

0.989 0.0 AdS Dynamics from Conformal Field Theory (1998)

0.952 0.971 Strings in Homogeneous Background Spacetimes (1997)

0.914 0.968 Variational principle and a perturbative solution of non-linear string
equations in curved space (1998)

0.899 0.999 Null Strings in Kerr Spacetime (1997)

0.719 0.968 The Effect of Spatial Curvature on the Classical and Quantum Strings
(1995)

0.423 0.973 Exact String Solutions in Nontrivial Backgrounds (2001)

0.186 0.998 Perturbative String Dynamics Near the Photon Sphere (1998)

Table 3. Citations ranking of the paper “Null string evolution in black hole and cosmological spacetimes (2002)” obtained by using the two different

paths π1 and π2.

Dataset Method 10 20 30 40 50 100

HEP-TH

coup. 0.240 0.384 0.467 0.529 0.578 0.681

πa
2

0.476 0.725 0.815 0.843 0.867 0.916

πb
2

0.492 0.709 0.817 0.867 0.899 0.947

HEP-PH

coup. 0.126 0.224 0.290 0.355 0.407 0.543

πa
2

0.513 0.739 0.826 0.861 0.887 0.934

πb
2

0.511 0.715 0.786 0.848 0.867 0.941

PATENTS

coupling 0.047 0.084 0.105 0.125 0.143 0.195

πa
2

0.485 0.697 0.752 0.782 0.815 0.865

πb
2

0.542 0.816 0.883 0.911 0.922 0.928

Table 4. Ranking results on the HEP-TH, HEP-PH and PATENTS datasets of a simple bibliographic coupling-based method and our proposed

approach.

Table 4 reports the results of this experiment. The first row denotes the number of the first top k ranked papers

for each method we adopted, ranging in the set {10, 20, 30, 40, 50, 100}. The baseline method (reported in the second

row) is a simple bibliographic coupling-based approach that builds the ranked list by using the bibliographic strength

as a score. The values in the table denote the percentage, on average over the 76 (resp., 35 and 100) papers for the

HEP-TH (resp., HEP-PH and PATENTS) dataset, of the top k ranked papers that are cited by the considered papers.

As we can see, the method that uses the path πb
2

always outperforms the baseline approach, as the path πa
2
, thus proving

the validity of the proposed approach.
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4. Conclusion

Paper citation graphs are a traditional social medium for the exchange of ideas and knowledge among researchers.

In this paper we used citation graphs as a mean to assess both the importance of the citations included in a paper and

to identify relevant papers. These problems have been addressed by modeling the citation graph with a probabilistic

graph useful to infer unknown links among the nodes. The proposed approach has been evaluated on a real world

citation network whose results proved its validity.
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