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Abstract. Wireless sensor networks (WSNs) represent a typical domain
where there are complex temporal sequences of events. In this paper we
propose a relational framework to model and analyse the data observed
by sensor nodes of a wireless sensor network. In particular, we extend
a general purpose relational sequence mining algorithm to tackle into
account temporal interval-based relations. Real-valued time series are
discretized into similar subsequences and described by using a relational
language. Preliminary experimental results prove the applicability of the
relational learning framework to complex real world temporal data.
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1 Introduction

Wireless sensor networks (WSNs) represent a recent technology able to moni-
tor the physical world such as health, micro-climate and habitat, or earthquake
and building health [1-4]. A WSN represents a typical domain where there are
complex temporal sequences of events, such as computer security and planning.
In this paper we aim at applying a relational framework to model and analyse
the data observed by nodes involved in a sensor network. The main contribu-
tion of this work regards the proposal of a powerful and expressive description
language able to represents the spatio-temporal relations appearing in a sensor
network, and a general purpose system able to elicit hidden frequent temporal
correlations between sensor nodes. In particular the objective of this paper is
twofold: O1) exploiting a relational language to describe the temporal evolution
of a sensor network, and O2) using relational learning techniques to discover
interesting and more human readable patterns relating spatio-temporal correla-
tions. Furthermore, we can combine temporal and content-based relations into
a heterogeneous language providing a general framework applicable to other do-
mains characterized by temporal and content relational features. Indeed, the
data generated by sensor nodes involved in a sensor network are type-related
(the humidity depends on the temperature), time-related (the temperature may
change over time) and spatio-related. All these relations could be easily repre-
sented by using a relational language such that proposed in this paper, trying
to shift the basic time-series description language to an higher one. Algorithms
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proposed for sequential pattern mining generally consider events occurring in
a time instant, while in some applications, like in sensor networks, events may
occur in a time interval. The paper proposes an efficient algorithm able to mine
frequent relational patterns representing arrangements of related intervals.

2 Relational pattern mining

The algorithm we present in this paper is based on the work described in [5]
where the authors presented a framework for mining complex patterns, expressed
in first-order language, in which events may occur along different dimensions.
Specifically, multi-dimensional patterns were defined as a set of atomic first-
order formulae in which events are explicitly represented by a variable and the
relations between events were represented by a set of dimensional predicates.
Here, that framework has been extended in order to take into account interval-
based temporal data. We used Datalog [6] as representation language for the
domain knowledge and patterns. Sequences and patterns are represented by a
set of logical atoms. An atom p(ty,...,t,) is a predicate symbol p of arity n
applied to n terms ¢; (constants or variables).

Definition 1 (Subsumption). A substitution 6 is defined as a set of bindings
{X1 —ay,...., X, — ap} where X;,1 < i <nisawvariable and a;,1 <i<nisa
term. A substitution 0 is applicable to an expression e, obtaining the erpression
ef, by replacing all variables X; with their corresponding terms a;.

Definition 2 (Relational sequence). A relational sequence may be defined
as an ordered list of atoms separated by the operator <:1l; <ly < --- <l,.

In order to make the framework more general, the concept of fluents has been
considered. Assuming a sequence as an ordered succession of events, a fluent is
used to indicate that an atom holds for a given event, and hence distinguishing
dimensional and non-dimensional atoms. In order to describe multi-dimensional
relational patterns, some dimensional operators for describing general event re-
lationships have been introduced: a) <;, next step on dimension i; b) <;, after
some steps on dimension i; and ¢) QF, exactly after n steps on dimension i.

Definition 3 (Subsequence [7]). Given a sequence o = (e1ea---em) of m

elements, a sequence o’ = (ejes---¢€}) of length k is a subsequence (or pattern)
of the sequence o if

1. 1<k<m
3. Vi,j,1 <i<j<k3nlL1<h<l<m:e =eyande)=e.

The frequency of a subsequence in a sequence is the number of different mappings
from elements of o’ into the elements of o such that the previous conditions hold.

Note that this is a general definition of subsequence, in our case the gaps rep-
resented by the third condition are modelled by the <1; and (O} operators as
reported in the following definition.
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Definition 4 (Multi-dimensional relational pattern). A multi-dimensional
relational pattern is a set of atoms, involving k events and regarding n dimen-
sions, in which there are non-dimensional atoms and each event may be related
to another event by means of the operators <;, <l; and QF operators, 1 <i < n.

We are interested in mining maximal frequent patterns.

Definition 5 (Maximal pattern). A pattern o’ of a sequence o is mazimal if
there is no pattern o’ of o more frequent than o’ and such that o’ is a subsequence
of o”.

In order to calculate the frequency of a pattern over a sequence it is important
to define the concept of sequence subsumption.

Definition 6 (Pattern Subsumption). Given P a multi-dimensional rela-
tional pattern and S a multi-dimensional relational sequence. The pattern P
subsumes the sequence S, written as P C S, iff there exists an SLDo1-deduction
of P from S.

An SLDg-deduction is an SLD-deduction under Object Identity. In the Ob-
ject Identity framework, within a clause, terms that are denoted with different
symbols must be distinct, i.e. they must represent different objects of the domain.

2.1 The algorithm

The algorithm for frequent multi-dimensional relational pattern mining is based
on the same idea of the generic level-wise search method, known in data mining
from the APRIORI algorithm [8]. The generation of the frequent patterns is based
on a top-down approach. Specifically, it starts with the most general patterns
of length 1 generated by adding to the empty pattern a non-dimensional atom.
Then, at each step it specializes all the frequent patterns, discarding the non-
frequent patterns and storing the ones whose length is lesser than the parameter
mazsize. Furthermore, for each new refined pattern, semantically equivalent pat-
terns are detected, by using the fp1-subsumption relation, and discarded.

In the specialization phase, the refinement of patterns is obtained by using a
refinement operator p that maps each pattern to a set of specializations of the
pattern, i.e. p(p) C {p'|p <X p’'} where p < p’ means that p is more general of p’
or that p subsumes p’.

The algorithm uses a background knowledge B (a set of Datalog clauses)
containing the sequence and a set of constraints that must be satisfied by the
generated patterns. In particular B contains the following predicates:

— mazsize(M): maximal pattern length (i.e., the maximum number of non-
dimensional predicates that may appear in the pattern);

— minfreq(m): this constraint indicates that the frequency of the patterns must
be larger than m;

— dimension(next_i): this kind of atom indicates that the sequence contains
events on the dimension i. One can have more that one of such atoms, each
of which denoting a different dimension. In particular, the number of these
atoms represents the number of the dimensions.
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Constraints Furthermore the background knowledge contains some constraints
that useful to avoid the generation of unwanted patterns. Specifically they are:

— negconstraint([p1, pa, - .., Pn/): specifies a constraint that the patterns must
not fulfill, i.e. if the clause {p1,pas,...,pn} subsumes the pattern then it
must be discarded. For instance, negconstraint([p(X,Y),q(Y)]) discards all
the patterns subsumed by the clause {p(X,Y),q(Y)};

— posconstraint([p1,p2, - . ., pn/): specifies a constraint that the patterns must
fulfill. It discards all the patterns that are not subsumed by the clause
{p1,p2, P s

— atmostone([p1,p2,-..,pn/): this constraint discards all the patterns that
make true more than one predicate among p1, ps, . .., pn. For instance, atmo-
stone([red(X),blue(X),green(X)]) indicates that each constant in the pattern
can assume at most one of red, blue or green value.

Hence, the solution space is pruned by using some positive and negative
constraints specified by the negconstraint and posconstraint literals. The last
pruning choice is defined by the atmostone literals. This last constraint is able
to describe that some predicates are of the same type.

Efficiency Issues In order to avoid the generation of patterns containing not
linked variables we used the classical types and modes declaration:

— type(p): denotes the type of the predicate’s arguments p;
— mode(p): denotes the input output mode of the predicate’s arguments p.

In this way we improve the efficiency of the algorithm, since it does not
generate patterns containing unrelated atoms. These classical mode and type
declarations specify a language bias indicating which predicates can be used in
the patterns and to formulate constraints on the binding of variables.

Finally, the background knowledge contains the predicate key(/p1,pa, ..., pn])
specifying that each pattern must have one of the predicates p1,ps2,...p, as a
starting literal. Since each pattern a) must start with a non-dimensional predi-
cate, or with a predefined key, and b) its frequency must be less than the sequence
length, the frequency of a pattern can be defined as follows.

Definition 7 (Pattern Frequency and Support). Given a relational pattern
P = (p1,p2,...,pn) and S a relational sequence, the frequency of the pattern P
18 equal to the number of different ground literals used in all the possible SLDoy-
deductions of P from S that make true the literal p1. The support of P on S is
equal to the frequency of the pattern {p1} over the frequency of the pattern P.

Mining from more than one sequence the support is calculated as the number
of covered sequences over the total number of sequences.

In order to improve the efficiency of the algorithm, for each pattern P =
(p1,p2, - .-, Dn) the set O of the substitutions defined over the variables in p; that
make true the pattern P are recorded. In this way, the support of a specializations
P’ of P is computed by first applying a § € © to P’. It is like to remember all
the keys of a table that make true a query.
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3 Interval-based Temporal Sequences

Here we describe the problem of subdividing real-valued time series into similar
subsequences and the extension of the framework to the case of interval-based
sequences.

3.1 Abstracting Time Series

The aim is to segment a signal by looking for a sequence of measurements over
which a property holds, such as below a given threshold, and to label this seg-
ment.

A method to segment a sequence is to iteratively merge two similar segments
based on the squared error minimization criteria. Another approach is using
clustering, by firstly finding the set of subsequences with length w, by sliding a
window of width w, and then clustering the set of all subsequences. A different
symbol is associated with each cluster. Other approaches are based on using
self-organizing maps.

Here, we concentrate on the abstraction process that translate the initial se-
quence (with real-valued elements) to a discretized sequence composed of sym-
bols taken from an given alphabet. In particular, our segmentation method is a
supervised process that assigns labels to a portion of a time series by using a set
of predefined attributes. Future extensions of proposed approach include the use
of more powerful techniques to partition time series, like that proposed in [9].

Given a real-valued time series (¢;,%;)1<i<n, ¢; € R, the goal is to transform
it into a discrete series (t;,¢;)1<i<n, ¢ € {1,...,C}. In the case of a sensor
network, made up of n nodes, each node i, located in the environment at the
position p;, sense a set of properties P at every time instance t. Our approach
is to define some abstraction rules useful to shift the basic sensor description
language into a more general one. In particular each sensor produces a time
series, describing its reading over time, that are then divided into intervals.

Let C denote the set of possible properties or descriptive labels, such as
“temperature is high”. Having a time series (¢;, 2;)1<i<n, denoted by (¢,2)1_n,
an abstraction rule is a function ¢, ((t,z)1_,) returning a set of m intervals. In
particular,

(ba((t?x)l,n) = {6a(l7tiuti+h7ck)|tj € DZ,Z' < J <i+hAcg€ C}lSlSm

where (k,t;,t;yn,cr) denotes an interval starting from ¢; and ending to t;4p,
and Dj represents the domain of values for the function ¢, associated to the
label ¢ € C. For instance for the temperature time series in the wireless sensor

network domain we defined the abstraction function
Ge((t,2)1_n) = {0: (I, ti, tign, )|t € D ey € Ci} where

Dyt = {z|r < 13}, D ={z[13<2 <22}, D" = {z[22 < 2 < 31}
D} = {z|31 <z < 40}, D¢ = {z]z > 40}

and C; = { very_low, low, medium, high, very_high }.
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Now that we have discretized the time series into intervals, we can extend
the definitions to the case of interval-based relational sequences.

Definition 8 (Relational Interval Sequence). Given a set T of time series
and the sets Cy,...,Ci7| of descriptive labels, a relational interval sequence is a
sequence of relational atoms

5(11 (idla bla 617U1)7 6(12 (id27 b27 62,”2)7 ey 5a,,, (id7,, bna enyvn)

where v; € C; is a descriptive label, b; and e; represent, respectively, the start-
ing and ending time, id; € N represents the interval identifier, and 6., is the

corresponding name of the time series a; € T. (The interval §(id, b, e,v) can be
written also by means of three literals as 6(id,v), begin(id,b), end(id,e)).

In particular a relational interval sequence can describe several labeled inter-
val sequences into a single one, enabling one to take into account the multivariate
analysis in case of different time series. Relations between time intervals are de-
scribed adopting the Allen’s temporal interval logic [10], as reported in Figure 1.

beforeli,j)

meets(ij}

owverlaps(i,ji

startsli.j)

duringlij)

finishesli,ji

Fig. 1. Allen’s temporal intervals [10]

Definition 9 (Relational Interval Pattern). Given S, the set of interval
relation symbols, a relational temporal pattern is a set of relational atoms

P =TUR = {6;(ids,b;, €;,v;) }i=1..n U{rel;(id},id7)}j=1..m

where rel; € S, and Vrelj(id},id?) € R 30y, (idy,, b, en, vn), Ok (idk, bg, e, vi) € I
such that idjl- =1idy, and id? = idy.

4 Experiments

In order to evaluate our approach, we used the data, freely available from [11],
collected from a wireless sensor network made up of 54 Mica2Dot sensors de-
ployed in the Intel Berkeley Research Lab and arranged in the laboratory as
shown in Figure 2.

A sensor network node is a small autonomous unit, often running on batter-
ies, with hardware to sense environmental characteristics, such as temperature,
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humidity and light. Such nodes usually communicates using a wireless network.
A sensor network is composed of a large number of sensors deployed in a natural
environment. The sensors gather environmental data and transfer the informa-
tion to the central base station with external power supply. The 54 sensors have
been monitored from February 28th to April 5th 2004, and the data, about 2.3
million readings, was collected using the TinyDB in-network query processing
system, built on the TinyOS platform. Each sensor collected topology informa-
tion, along with humidity, temperature, light and voltage values once every 31
seconds.

We selected the measurements (temperature, humidity, light and voltage)
from the sensors 41, 42, and 24, for the time period from 2004-03-18 to 2004-03-
21 corresponding to 23178 log rows. The aim is to discover some correlations be-
tween sensors and/or measurements useful for anomaly detection. For instance,
there is a strong correlation between the temperature and humidity, as we can
see from the Figure 3 that reports the corresponding graphs for the sensor 41.
The first task is to discretize the time series corresponding to each information in
order to obtain a interval-based temporal sequence like that reported in Figure 4
where each interval is labeled with a specific name. The discretization step has
been executed exploiting the functions ¢, ¢n, ¢1, and ¢, with the corresponding
domains D! where ¢ is the time series name (temperature, humidity, light and
voltage) and j is the descriptive label (very low, low, medium, high and very
high) associated to the interval:

DY = {z]r < 13}, D} ={z]13<x <22}, D" = {z|22 <z < 31},
D} ={z[31 <z <40}, D" = {z|z > 40},

Dyl = {z|r < 10}, D}, = {z]10 <z <25}, Dy = {z(25 < z < 40},
Dp = {z|40 < x <55}, D" = {z|z > 55},

Dy = {z|z < 50}, Dj = {z]50 < x < 200}, D" = {z|200 < z < 400},
D = {z]400 < z < 600}, D" = {z|z > 600},

DL = {z]z < 2}, Dy ={z]2<x <24}, D) ={z24<x <275},

DYt = {z|x > 2.75}.

@ . ]
cal
@ €0

e @
D e |-
& M,

Fig. 2. Sensors in the Intel Berkeley Research lab
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Fig. 3. Correlation between temperature (bottom) and humidity (top) time series.

hurmidity

temperature | | ) | ) | |

Fig. 4. Intervals of the temperature (bottom) and humidity (top) time series.

Adopting these functions we obtained a temporal sequence made up of 816
intervals (81 for temperature, 94 for humidity, 255 for light and 386 for voltage).
Then we added all the Allen’s temporal relations between the intervals (332402
before, 1052 meets, 8872 overlaps, 163 starts, 7438 during, 131 finishes and 42
matches atoms) obtaining a relational sequence of about 350000 literals. The
following literals represent a fragment of a sequence describing the relational
representation of some time series, where each interval is described by three
predicates

a(sensor, interval, label), begin(interval, s), end(interval, e)
where « €{temperature, humidity, light, voltage}.

near(41,42). far(41,24). far(42,24).
temperature(24,il,high). begin(il,0). end(il,20).
light(41,i30,very_low). begin(i30,2). end(i30,16).
starts(il,i2), before(il2,i34),

Table 1 reports the results of the algorithm when applied on the sequence
previously described and using two different values for the minimum support.
The fourth column reports the number of patters belonging to all the possible
specializations whose support is greater than MinSupport. The fifth column re-
ports the number of maximal patterns fulfilling all the constraints obtained by
the algorithm. Some interval-based patterns discovered by the algorithm and
expressing the time correlation and the information correlation are:

temperature(A,B,low), before(B,D), temperature(A,D,medium) [s = 32.1%],

temperature(A, B,low), meets(B,D), humidity(A,D,high) [s = 13%)],

temperature(A, B,medium),overlaps(B,D),humidity(24,D,high),far(24,A) [s = 24%).

5 Conclusion

Previous work on mining temporal patterns for interval-based sequences, as op-
posed to point-based events, include [12-14] but without using a logical descrip-
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lMinSupport[ Level[ Specializations[ Candidates[ Maximals[ Time (secs)‘

1 16 11
2 174 42
3 691 213
10% 4 3447 765 585 337.805
5 10672 1060
6 12378 408
7 3992 0
1 16 8
2 128 30
3 518 160
20% 4 2609 473 327 222.313
5 6636 381
6 4639 46
7 452 0

Table 1. Detailed results of two experiments.

tion language. Other work in the research area of spatial data mining try to
tackle into account complex representations with a logical language, however
without considering temporal-based relations [15, 16].

The work presented in this paper can be related to that proposed in [17,
18]. However, we apply the proposed framework to a real world wireless sensor
network data, and we used a powerful and general purpose multi-dimensional
relational pattern mining system [5]. In [17] the authors represents a single se-
quence as a set of predicates and temporal relations. Each predicate is assumed
to be hold in a given temporal interval, while the temporal relations are pred-
icates expressing the Allen’s temporal correlation between two predicates. Fur-
thermore, each predicate is associated to a unique symbolic identifier indicating
a specific temporal intervals, and temporal relations are expressed between those
identifiers. Hence, every we use a predicate in a sequence we are implicitly as-
suming that it corresponds to a fluent predicate without having the possibility
to introduce predicate that only express a structural relation between objects.
Furthermore, as reported in [17], the algorithm they presented is not applicable
to real world problems due to its high complexity. Indeed, they specialize a pat-
tern by adding a literal, or by variable unification, or by introducing k™ (where
k is the number of different Allen’s relation and n corresponds to the number of
possible predicate pairs) temporal restrictions between predicate pairs leading
to an exponential time complexity.

The framework we presented in this paper can be used to solve complex
temporal data mining tasks by using a relational interval-based description. The
algorithm that we proposed is an extension of the efficient learning system pre-
sented in [5] with new dimensional operators. Preliminary experimental results
prove that the framework can be applied to real world domains such as wireless
sensor networks.
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