Handling continuous-valued attributes
in Incremental First-Order Rules Learning

Teresa M.A. Basile, Floriana Esposito, Nicola Di Mauro, and Stefano Ferilli

Department of Computer Science, University of Bari, Italy
{Dbasile, esposito, ndm, ferilli}@di.uniba.it

Abstract. Machine Learning systems are often distinguished according
to the kind of representation they use, which can be either propositional
or first-order logic. The framework working with first-order logic as a
representation language for both the learned theories and the observa-
tions is known as Inductive Logic Programming (ILP). It has been widely
shown in the literature that ILP systems have limitations in dealing with
large amounts of numerical information, that is however a peculiarity of
most real-world application domains. In this work we present a strategy
to handle such information in a relational learning incremental setting
and its integration with classical symbolic approaches to theory revision.
Experiments were carried out on a real-world domain and a comparison
with a state-of-art system is reported.

1 Introduction

Traditional application of Machine Learning to intelligent systems development
involves collecting a set of training examples, expressing them in a representation
language such that the corresponding representation space facilitates learning,
and using a learning algorithm to induce a set of concepts from the codified
training examples. The induced concepts are subsequently validated, incorpo-
rated into an inferential system and deployed into an environment. It is well
known that the choice of the proper representation for a learning problem has a
significant impact on the performance of learning systems. In traditional learning
problems, the training examples are typically represented as vectors of attribute-
value (attribute-value or propositional learners). In most complex real-world do-
mains, however, the exploitation of this kind of representation language could
affect the learning efficiency. In such domains, the adoption of a more powerful
representation language is required; for instance, the language of first-order logic,
a natural extension to propositional representations, is able to describe any kind
of relation between two or more objects. The systems that exploit such a repre-
sentation are called relational or Inductive Logic Programming learning systems.
Differently from the propositional representation, however, in which only a single
mapping is possible between descriptions, this representation language allows a
potentially large number of mappings between descriptions. Thus, it becomes
more difficult to handle relationships among data and, in particular, numerical

information due to the non-determinacy in relational learning, i.e. the possibil-
ity of associating more than one value to the numerical attributes for examples.
This is not true for the propositional case in which the correspondence between
each attribute and its value is one-to-one for each example.

The problem is accentuated if we consider the approach exploited in the learn-
ing task. Classical approaches, using batch methodologies, assume/require that
all the information needed is available at the beginning of the learning process.
This is clearly not generally true for the knowledge assimilation process, in par-
ticular in those real-world applications that require the ability of incrementally
revising a domain theory as new data is encountered. In these cases incremental
learning, as opposed to batch learning, is needed. However, the management of
numerical information in incremental approaches becomes more complex due to
the fact that the induction of numerical attributes must take into account the
non-determinacy in the relational learning and must be performed and revised
each time a new observation is encountered.

In this paper, after a brief description of the works concerned with topic of
handling numerical information in relational learning, we present a strategy to
handle such information in an incremental relational learning setting and its inte-
gration with classical symbolic approaches to theory revision. Some experiments
were carried out on a real-world domain and a comparison with a state-of-art
system is reported.

2 Related Work

Inductive Logic Programming (ILP for short) algorithms have shown their in-
adequacy in dealing with the large amounts of numerical information that char-
acterize most real-world application domains. This problem has been addressed
by means of different approaches. In propositional learning, discretization has
received a lot of attention [6, 8, 9] and it has proven to be a valuable tech-
nique with respect to efficiency and accuracy. The general idea of discretization
[16, 13] consists in splitting a range of continuous values into intervals so as to
provide useful information about classes. Moving towards relational learning, the
first question in ILP is: what to discretize?. Indeed, in relational learning each
attribute in the attribute-value representation is mapped in an argument of a
predicate. So, instead of discretizing a numerical attribute, we have to discretize
a numerical argument. The problem now is that each numerical argument has
a corresponding query that generates all the values of the numerical argument
that can have 0,1 or more values per example.

A number of methods have been devised to solve the problem: The first class
of methods, as in LINUS [14], concerns the transformation of relational problems
into equivalent propositional ones in order to handle real numbers by means of
techniques already tested in decision tree induction systems. Different methods
of propositionalization have been implemented in REPART [21] and in ICP [17].
In the former the propositionalization pattern is provided by the user, while in
the latter it is built from the training set. More recently, a lazy propositionaliza-

tion method that selectively propositionalizes the first-order logic training set by
interleaving attribute-value reformulation and algebraic resolution has been pro-
posed [1]. The other classes of methods born for handling numerical features in
an ILP setting use a priori knowledge, either in a procedural form as in FOIL [5]
or in a declarative form as in Progol [15]. FOIL automatically produces compar-
ative literals by means of built-in relational predicates expressed on numerical
variables already present in other non-comparative literals and compared with
a threshold. The semantics of the built-in relational predicates, as well as the
heuristics for the selection of the best threshold, are defined procedurally and
embedded in the code of the system. On the contrary, Progol explicitly codes the
capability of numerical reasoning in a declarative form as background knowledge.

Other techniques involved the classical statistical data analysis research area
that was extended with new tools of formalization in order to deal with symbolic
data. This kind of integration is more complex when using first-order compu-
tational learning models due to the practical and theoretical possibility of in-
tegrating different computational strategies, different knowledge representations
and different processing methods in a common framework. In [12] the authors
faced the problem of handling both numerical and symbolic data in first-order
models, distinguishing the phase of model generation from examples, concerning
the on-line discretization of numerical attributes and relations, and the phase of
model recognition by means of a flexible probabilistic coverage test. Other hy-
brid approaches make cooperative techniques coming from ILP and Constraint
Logic Programming by means of a transformation step of counter-examples into
constraints [17]. The approach proceeds generating the equivalent Constraint
Satisfaction Problem (CSP) of an ILP problem: all constrained clauses that
cover positive examples and reject negative ones can be trivially derived from
the solutions of the CSP corresponding to the original ILP problem. Successively,
the CSP is solved by means of a constraint solver and this will allow to build
the set of solutions in terms of hypotheses space.

Algorithms for mapping propositional Horn clauses to neural networks have
been presented by several authors [19, 2, 20]. The basic idea underlying the pro-
posed strategies in such context is that a propositional theory can be functionally
described by an and/or graph having atomic expressions in leaves. Such a graph
can be transformed into a neural network by replacing the boolean A and V op-
erators in the nodes with continuous, derivable functions and by adding weights
on the links. This method was extended and adapted to first-order theories, First
Order Neural Network (FONN), as in [4], where it is implemented a method to
translate a first-order classification theory into a neural network of elementary
computational units that are refined, by means of an error gradient descent,
preserving the readability of the theory. The method works on a theory that
is supposed to be already generated by a relational learner or manually given
by a domain expert, and tries to refine exclusively the numerical information
expressed on the arguments of the predicates. Finally, some works to face the
problem of managing numerical data concern the combination of ILP strategies
with Evolutionary Computation techniques. Examples of this kind of approaches

are SMART+ [3] and the work by Divina et al. [7]. In the former case the system
transforms the real numbers into discrete integers that can be encoded as binary
numbers, and exploits genetic algorithms to handle such values. In the latter
case, the Authors propose to handle numerical attributes by using the relational
built-in constraints. During the execution of a genetic-algorithm-based induc-
tive concept learner, a constraint for a numerical attribute is generated when
that attribute is selected and, successively, it is modified during the evolution-
ary process by using genetic operators, that were defined by the Authors and
that exploit information on the distribution of the values of attributes in order
to update the interval boundaries of the constraints.

All the methods above mentioned are based on the assumption that batch
approaches are applied to the learning task. Here we address the problem of
handling numerical information in an incremental setting that exploits first-order
logic as a representation language.

3 Handling Continuous-valued Data in an incremental
FOL learning system

In this section we present the extensions of the incremental ILP learning system
INTHELEX [11] to make it able to handle numerical data. In such a system two
entities are involved in the learning process, observations and hypotheses. Both
are expressed by means of Datalog clauses (function-free Horn clauses - only
constants or variables are allowed in the description), and are interpreted under
the assumption of the Object Identity (OI) (terms denoted in different way have
to represent distinct objects in the description [18]).

In the pure symbolic representation, both observations and hypotheses are
represented using the same formalism, and differ in the kind of arguments on
which their literals are built: constants in case of the observations, variables in
case of the hypotheses. Now we need to extend the representation formalism
to introduce numerical values in both observations and hypotheses. Trivially, in
the observations we introduce the numerical constants and represent them in
the same way of the symbolic ones; in the hypotheses, each numerical value is
associated to a variable, that in the following we will call numerical variable,
on which it is defined an interval properly determined on the grounds of the
observations. Thus we can distinguish, in the observations: numerical predicates
(iff at least one of its arguments is a numerical constant); symbolic predicates (iff
its arguments are all symbolic constants); numerical constants (numeric strings);
symbolic constants (alphanumeric strings that begin with a lower-case letter).
As to the hypotheses, we firstly need to say that, in the following, a numerical
constraint on a variable is so defined:

Definition 1 (Numerical Constraint). A numerical Constraint C' on a vari-
able V is a disjunction of numerical intervals (Rangey; Ranges; ...; Rangey)
where Range; = (Inf,Supp) fori = 1..n and

Inf = (V. > numerical value) OR Inf = (V > numerical value)

Supp = (V< numerical value) OR Supp = (V. < numerical value)

Thus, in the hypotheses we can distinguish: numerical predicates (iff at least
one of its arguments is a numerical variable); symbolic predicates (iff its argu-
ments are all symbolic variables); symbolic variables (variable - alphanumeric
strings that begin with an upper-case letter); numerical variables (variable - al-
phanumeric string that begin with an upper-case letter) on which a numerical
constraint is defined); numerical constraints reported above. It is worth noting
that a numerical predicate always contains at least one symbolic term.

3.1 Modification to the Object Identity Framework

The extension of the representational language to make it able to describe numer-
ical information in observations and hypotheses, highlighted a practical problem
as regards the OI assumption that is used in the framework. Indeed, since the
same numerical value could be associated as property of more than one object
(e.g., same width for two blocks), we cannot impose the constraints derived from
such assumption on numerical data. Thus, the transformation from a Datalog
clause to its corresponding Datalog® (Datalog clause under the OI assumption)
is reformulated in the following way:

Definition 2. Any Datalog clause C = {Ly, Lo,..., L,} has a corresponding
Datalog®" clause Cor = { core(Cor) |Jconstraints(Cor) }, where:

core(Cor) = { L1, Loy..., L, } =C

constraints(Cor) = {#(t1,t2)| t1, t2 € terms(C), t1 # ta forall terms(C) ¢
numeric_terms(C)}

where numeric_terms(C') represents the set of constants that are numerical val-
ues or the set of variables that represent a numerical property.

Furthermore, the notion of substitution, regarded as a function mapping vari-
ables to terms, that under the OI assumption should be an injective mapping,
has to be revised taking into account the above considerations. Thus, given a
set of terms T', we say a substitution o is an Ol-substitution with respect to T
if and only if for all couples of terms t1, to € T that are not number we have:
tq 75 to = ti0 75 too.

Let us now see how it is possible to formally define refinement operators,
starting from the definitions given in [10], in order to take into account the
numerical information on which the OI constraint is not valid.

Definition 3 (Downward Refinement Operator po;). Let C' be a Datalog®
clause. Then, a clause D belongs to the set of the downward refinements of the
clause C, i.e. D € po,(C), when either of these conditions hold:

(i) D = C0, where 0 = {X/a}, X € vars(C), a ¢ symbolic_consts(C), that is, 6 is a
substitution replacing a symbolic variable of C with a new symbolic constant, i.e.
not already present in C;

(i) D = C0, where 0 ={X/a}, X € vars(C),
a € numeric_consts(Numerical_Constraint), that is, 0 is a substitution replacing
a numerical variable of C with a numerical constant belongs to Numerical _Constraint
that is the numerical constraint defined on the numerical variable that one is re-
placing;

(i) D = CU{—~A}, where ~A is a symbolic literal, such that: A ¢ C;

(i) D =CU{{-A}, {Numeric_.Constraints}}, where = A is a numerical literal, such
that: =A ¢ C. {Numeric_Constraints} ¢ C is the set of numeric constraints
defined on the numeric variables that are arguments of the literal A (note that if
A does not contains variables, but only constants this set is empty).

Definition 4 (Upward Refinement Operator do;). Let C be a Datalog®
clause. Then, a clause D belongs to the set of the upward refinements of the
clause C, i.e. D € 6,,(C) when either of these conditions hold:

(i) D = Co, where 0 = {a/X}, a € symbolic_consts(C), X ¢ vars(C), that is, o is
an anti-substitution replacing a symbolic constant of C' with a new variable;
(ii) D =C\ {—A}, where =A is a symbolic literal, such that: =A € C;
(i) D = C\{{-A}, {=Numeric_Constraint}}, where =A is a numerical literal, such
that: A € C and {—~Numeric.Constraint} € C is the set of numerical constraints
that are defined on the set of numerical terms of the literal A.

Note that: C = H,-By,...,mB, = (H : —Bjy,..., B,) thus, adding/removing
—A from C is equivalent to add/remove a literal from the body clause. The
operators above defined fulfill the same properties, that are deemed as desirable
from a theoretical point of view, as the symbolic ones reported in [10].

3.2 Refinement Operators

Here we present a sketch of the procedure implemented by the refinement oper-
ators exploited in the system in order to handle the numerical information and
their integration with the classical inductive refinement operators, that work on
symbolic information, embedded in the system in consideration. When a new
observation is taken into account three situations can happen: The observation
(positive or negative) is correctly classified; The observation is positive and the
system does not correctly classify it; The observation is negative and the system
does not correctly classify it. In the first case the theory is correct and thus
it does not need any revision. In the second (respectively, the third) case the
theory is too specific (respectively, too general) and, thus, it needs to be revised:
specifically, a generalization phase, or upward refinement, (respectively, a spe-
cialization phase or downward refinement) is required. The classical inductive
refinement operators exploited in the framework operate in the following way:

- Generalization phase - Inductive Upward Refinement:
1. eliminating one (or more) literal(s) from the clause that does not cover
the positive observation;
2. adding a new clause to the theory - the observation itself with constants
properly turned into variables.
- Specialization phase - Inductive Downward Refinement:
1. adding one (or more) literal(s), coming from the past positive observa-
tions to the clause that covers the negative observation;
2. adding the negation of a literal, coming from the negative observation
that caused the misclassification, to the clause that covers the negative
observation.

A modification of these operators to handle numerical information is necessary.
Firstly, we present the definition of inductive refinement operators able to handle
numerical information. Then a framework for the integration of the operators
that work on both numerical and symbolic information will be provided. As
regards their definition, it is articulated in two phases, as reported in the fol-
lowing, one for the addition of a new numerical constraint and the other for the
modification of an existing numerical constraint.

- addition of a new numerical constraint. Firstly, for each numerical con-
stant ¢ found in the observation it is replaced with a new variable V in
the literal it is argument of. Then, to such a new variable V it is asso-
ciated the proper numerical constraint based on the value of the numeri-
cal constant in the observation. In other words, given an observation, let
descr(cy,ca,cs3,. .., ¢,) a numerical literal in such a observation. Now sup-
pose that the i-th argument (¢ = 1,...,n) is a numerical constant which
value is k; then it will become: descr(cy,co,...,Vi,...,cn), (Vi >k, V; < k).

Example 1. Let C' the following clause:

bicycle(a) « part_of(a,b), part_of(a,c), wheel(b), large(b,10),
wheel(c), large(c,15), distance(b,c,10).

The resulting clause is:

bicycle(a) « part_of(a,b), part_of(a,c),
wheel(b), large(b,Y), (Y >= 10, Y =< 10),
wheel(c), large(c,Z), (Z >= 15, Z =<15),
distance(b,c,W), (W >= 10, W =< 10).

- modification of an existing numerical constraint. This phase proceeds
according to the situation at hand.

i. positive observation not covered - gemeralization of a mumerical constraint.
Let Constr be the numerical constraint that has to be modified, specifically
generalized, due to a misclassification of a positive observation. This situa-
tion arises because at least one of the numerical values, that is a property
of an object in the positive observation, does not fulfill the numerical con-
straint in the clause. Let v; be such a numerical value. As we known, the
numerical constraint Constr is a disjunction of numerical intervals: Constr =
[Range1; Ranges; . . . ; Rangen,); the situations that can hold are the following:

- v; is included between two intervals
if (Range; = (aj,b;) and Rangej+1 = (aj+1,bj+1)) and v; € [bj, aj4+1]
for some j =2,...,m —1 then
Range; = (aj,v;) iff |v;—bj| < |vi—aj+1]| OR
Rangejy1 = (vi,bj1) iff [vi—b;| = [vi—a;11]
- v; is a value lower than the first value of the first interval
if Range; = (a1,b1) and v; €]-00,a:1] then Range; = (vs,b1)
- v; is a value greater than the last value of the last interval
if Rangem = (@m,bm) and v; € [by, ,+00][then Range, = (am,v;)

ii. megative observation covered - specialization of a numerical constraint. Let
Constr be the numerical constraint to be modified, specifically specialized, due
to a misclassification of a negative observation. This situation arises because

at least one of the numerical values, that is a property of an object in the
negative observation, fulfills the numerical constraint in the clause. Let v; be
such a numerical value. As we known, the numerical constraint Constr is a
disjunction of numerical intervals: Constr = [Rangei; Ranges; . ..; Rangen];
the situations that can hold are the following:
- v; satisfies one of the intervals:
if Range; = (aj,b;), vi € (aj,b;) for some j =1,...,m then
Range; = (aj,vi[V Jvi, bj)

The modification phases, generalization and specialization of numerical intervals,
refer reciprocally. In this way, the resulting interval is not affected by the order
of example sequence!. The addition phase could refer the modification phase
that operates on the new numerical constraint just introduced in the clause. The
stop criterion in these mutual references is the restoring of the theory correctness
with respect to the previous examined observations. The schema reported in the
following sketched the integration of the numerical operators above defined with
the classical inductive operators.

- Inductive Upward Refinement (generalization phase) - Let be C the clause
that does not cover the positive example, then:

a) eliminate one (or more) symbolic literal(s) from C;

b) eliminate one (or more) numerical literal(s), with the relative numerical
constraints, from C

¢) modify (generalization) the numerical constraints in C;

d) add a new clause to the theory - the observation itself with symbolic
constants properly turned into variables and with numerical constants
properly associated to a variable on which a numerical constraint is im-
posed.

The steps b) and ¢) concern the numerical refinement. The procedure de-

scribed in b) is simultaneously activated with the procedure described in a)

allowing the elimination of both symbolic and numerical literals. However, if

a numerical literal is eliminated from the description of the clause, then the

associated numerical constraints have to be eliminated too. If only symbolic

literals are eliminated by the procedure and the correctness of the theory is

not restored because of the presence of numerical constraints, then step c)

is activated starting from the positive observation under examination and

from all the previously negative observations seen. If it is not possible to
modify the numerical constraints, they are removed from the description of
the clause with their associated numerical literals.

- Inductive Downward Refinement (specialization phase) - Let be C' the clause
that covers the negative observation, then:

a’) add one (or more) symbolic literal(s), coming from the past positive
observations to C;

! However, the integration of these operators with the inductive symbolic ones, will
suffer from the phenomenon of ordering effects — a phenomenon occurring when
different orderings of the same training set give out different results.

b’) add one (or more) numerical literal(s), coming from the past positive
observations to C;
¢’) modify (specialization) the numerical constraints in C;
d’) add the negation of a symbolic literal, coming from the negative obser-
vation that caused the misclassification, to C.
The specialization phase starts with the identification of the clause that
erroneously covers the negative observation and analyzes the cause of the
misclassification. Indeed, the misclassification of the observation can be due
to the symbolic literals or to the numerical ones, i.e. to the violation of
the numerical constraints. After this information is gained, the procedure
continues with the proper step: if the numerical constraints are violated,
step ¢’) is activated with the specialization of the constraints, otherwise new
(symbolic/numerical) literals are added to the clause (steps a’) and b’)). It
is important to note that if a numerical literal is added then new numerical
constraints, relative to the numerical variables of the literal, have to be
created, modified and added to the clause as well.

4 Experiments

The numerical operators and their integration with the symbolic ones embedded
in INTHELEX have been tested in the task concerning the extraction of rules for
the automatic identification of logical components in scientific paper documents
belonging to two different series (the Proceedings of the International Conference
on Machine Learning, ICML, and the paper formatted according to the Springer
Verlag Lectures Notes style, SVLN). The results were compared to those of the
state-of-art ILP batch learning system Progol [15]. The first-order representation
of the layout of such documents is made up of descriptions of the layout blocks
that make up a paper document along with their size (height and width) and
position (horizontal and vertical) in pixel, type (text, line, picture and mixed)
and relative position (horizontal/vertical alignment, adjacency). All the experi-
ments were performed according to a 10-fold cross validation methodology. For
each class of documents, the layout blocks that are semantically significant for
indexing/retrieval purposes were identified and annotated by expert users, and
subsequently used as examples to learn rules for automatically recognizing them
when new documents become available. Note that different document classes
have different labels, as reported in the following (in square brackets the corre-
sponding number of positive and negative instances is reported). The semantic
labels of interest recognized by the domain experts for class ICML were: abstract
[28+,340-], author [36+, 332-], page_number [27+, 341-] and title [29+, 339-]. As
regards class SVLN the following labels characterizing the objects belonging to
it were provided: abstract [32+,250-], affiliation [30+, 252-], author [30+, 252-]
and title [30+,252-]. Each positive example for a label class to be learned was
considered as negative for the others. Furthermore, any document block not la-
belled by the expert as significant was considered negative for all the components
to be learned. Table 1 reports the averaged results as regards number of clauses

Table 1. Understanding in scientific papers domain

| [[Clauses|Lgg’s|[Runtime (sec.)[Acc. %]
ICML
abstract 2.42 |10.33 753.04 97.84
author 2.81 [13.24 4055.14 97.66
page_number| 2.48 [12.24 1929.99 97.02
title 2.30 |10.21 425.35 98.04
SVLN
abstract 2.9 13 1800.61 94.93
affiliation 3.70 |12.33 5285.94 94.52
author 4.48 |13.96 7815.58 94.31
title 3.33 |12.57 2119.14 94.14

defining the concept (C1), number of performed generalizations (Lgg), Runtime
(in seconds) and Predictive Accuracy (Acc.). The overall outcomes reveal that
the system was actually able to learn significant definitions for the layout blocks
of interest in the documents. Indeed, the predictive accuracy is always very high
reaching even 98.04% (never falls below 94.14%).

Figure 1 shows the definitions learned for the layout components of the ICML
documents in one of the 10 folds. As shown, the learned rules have a high degree
of understandability for human experts, thus it is possible to exactly recognize
and map on a sample document the layout blocks referred to in the rules, e.g.
the domain expert recognized block C, in the rule defining logic_type_abstract, as
that containing the title (word) “Abstract” in a paper. The performance of the
system were compared to that obtained by the Progol batch system (Table 2).
For pairwise comparison a 10-fold cross validation paired ¢-test was used in order
to evaluate the difference in effectiveness of the rules induced by the two systems
according to the predictive accuracy metric. Requiring a significance level of o =
0.975, the test revealed no statistically significant differences among them. Such
a comparison turns out encouraging on the goodness of the proposed numerical
operators. Indeed, Progol is an ILP system that exploits a batch strategy, and
hence it starts the learning process with all the observations available, which
facilitates the operations on numerical data.

5 Conclusion and Future Works

In this paper we faced the problem of handling numerical information in an in-
cremental setting exploiting first-order logic as a representation language. The
limitations of relational learning systems in dealing with numerical data has been
widely shown in the literature, the incremental nature of most real-world appli-
cation domains further complicates the problem. We proposed a strategy to face
these problems, and discussed its integration with classical inductive refinement
operators. The strategy was embedded in the ILP system INTHELEX, and ex-
periments carried out on a real-world domain showed good system performance,

logic_type_abstract(A) :- logic_type_page_number (A) : -

part_of(B,A) ,type_of_text(A), type_of_text(A) ,part_of(B,A),
width(A,I), (I>=190,I=<210), part_of (B,C) ,type_of _hor_line(C),
part_of (B,C) ,type_of_text(C), width(C,D), (D>=16,D=<512),
width(C,D), (D>=79,D=<489) , height (C,E), (E>=1,E=<5),
height(C,E), (E>=5,E=<15), x_pos_centre(C,F), (F>=22,F=<343),
x_pos_centre(C,F), (F>=7,F=<558) , width(A,G), (G>=9,G=<16),
part_of (B,G) ,type_of _text(G), height (A,H), (H>=7,H=<8).
width(G,H) , (H>=45,H=<54),
on_top(G,A).

logic_type_author(A) :- logic_type_title(A) :-
part_of (B,A) ,type_of _text(A), type_of_text(4),
height (A,E), (E>=42,E=<71), width(A,F), (F>=152,F=<505),
width(A,F), (F>=109,F=<234), part_of (B,A) ,part_of(B,C),
y_pos_centre(A,I), (I>=173,1=<272), type_of _text(C) ,part_of(B,D),
part_of (B,C) ,type_of_text(C), on_top(A,D),
on_top(D,A), x_pos_centre(D,E) , (E>=291,E=<348) .

alignment_center_col(G,D),
width(G,H), (H>=502,H=<512) .

Fig. 1. Learned definitions for ICML layout components

even compared to a state-of-art batch system. Future work will concern the op-
timization of such operators by exploiting statistical measures in the addition
and modification phase of numerical constraints and extensive experimentation
on different application domains.

References

[1]
2]

E. Alphonse and C. Rouveirol. Lazy propositionalisation for relational learning.
In W. Horn, editor, Proceedings of ECAI00, pages 256—260. 2000.

C. Baroglio, A. Giordana, M. Kaiser, M. Nuttin, and R. Piola. Learning controllers
for industrial robots. Machine Learning, 23:221-250, 1996.

M. Botta and A. Giordana. Smart+: A multi-strategy learning tool. In Proceedings
of IJCAI93, pages 937-943, 1993.

M. Botta and R. Piola. Refining numerical constants in first order logic theories.
Machine Learning, 38:109-131, 2000.

R.M. Cameron-Jones and J.R. Quinlan. Efficient top-down induction of logic
programs, 1994.

J. Catlett. On changing continuous attributes into ordered discrete attributes. In
Y. Kodratoff, editor, Proceedings of the Fifth European Working Conference on
Learning, volume 482 of LNCS, pages 164—178. Springer Verlag, 1991.

F. Divina, M. Keijzer, and E. Marchiori. A method for handling numerical at-
tributes in GA-based inductive concept learners. In Genetic and Evolutionary
Computation, volume 2723 of LNCS, pages 898—908. Springer-Verlag, 2003.

J. Doungherty, R. Kohavi, and M. Sahami. Supervised and unsupervised dis-
cretization of continuous features. In A. Prieditis and S. Russell, editors, Proceed-
ings of ICML95, pages 194—202. Morgan Kaufmann, 1995.

[9]
[10]

[11]

[12]

[13]

[14]
[15]
[16]

[17]

18]

[19]

[20]

21]

Table 2. Comparison with Progol

| | Accuracy % |

ICML INTHELEX|PROGOL|t VALUE
abstract 97.84 99.45 1.97
author 97.66 98.09 0.48
page_number 97.02 97.26 0.23
title 98.04 97.79 -0.27

SVLN

abstract 94.93 95.02 0.05
affiliation 94.52 91.81 -1.53
author 94.31 91.13 -1.60
title 94.14 96.84 1.54

T. Elomaa. General and efficient multisplitting of numerical attributes. Machine
Learning, 36:201-244, 1999.

F. Esposito, N. Fanizzi, S. Ferilli, and G. Semeraro. Ideal theory refinement under
object identity. In Proceedings of ICMLO0O, pages 263-270, 2000.

F. Esposito, S. Ferilli, N. Fanizzi, T.M.A. Basile, and N. Di Mauro. Incremental
multistrategy learning for document processing. Applied Artificial Intelligence,
17(8/9):859-883, 2003.

F. Esposito, D. Malerba, and V. Marengo. Inductive learning from numerical and
symbolic data: An integrated framework. Intelligent Data Analysis, 5:445-461,
2001.

U.M. Fayyad and K.B. Irani. Multi-interval discretization of continuous-valued
attributes for classification learning. In Proceedings of IJCAI93, pages 1022— 1027.
Morgan Kaufmann, 1993.

N. Lavrac and S. Dzeroski. Inductive Logic Programming: Techniques and Appli-
cations. Ellis Horwood, Chichester, 1994.

S. Muggleton. Inverse entailment and Progol. New Generation Computing, Special
issue on Inductive Logic Programming, 13(3-4):245-286, 1995.

J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San
Mateo, CA, 1993.

M. Sebag and C. Rouveirol. Constraint inductive logic programming. In
L. De Raedt, editor, Advances in Inductive Logic Programming, pages 277-294.
1996.

G. Semeraro, F. Esposito, D. Malerba, N. Fanizzi, and S. Ferilli. A logic framework
for the incremental inductive synthesis of datalog theories. In N.E. Fuchs, editor,
Proceedings of LOPSTR98, volume 1463 of LNCS, pages 300-321, 1998.

V. Tresp, J. Hollatz, and S. Ahmad. Network structuring and training using
rule-based knowledge. In S. Hanson, J. Cowan, and C. Giles, editors, Advances
in neural information processing systems 5, pages 871-878. Morgan Kaufmann,
1993.

L. A. Zadeh. Knowledge representation in fuzzy logic. In R. R. Yager and L. A.
Zadeh, editors, An Introduction to Fuzzy Logic Applications in Intelligent Systems.
Kluwer Academin, 1992.

J.-D. Zucker and J.-G. Ganascia. Learning structurally indeterminate clauses.
In D. Page, editor, Proceedings of ILP98, volume 1446 of LNAI, pages 235—244,
1998.

