
INTHELEX: INcremental THEory Learner from EXamples

Teresa Maria Altomare Basile, Bruno Belsanti, Nicola Di Mauro, Antonio Di Palma, Stefano Ferilli
Dipartimento di Informatica – Università degli Studi di Bari

Via E. Orabona, 4 – 70125 Bari
ITALIA

ABSTRACT

INTHELEX is a learning system for the induction of
hierarchical theories from examples. It is fully and
inherently incremental, and can learn simultaneously
various concepts, possibly related to each other. The
representation language, which is common to both
examples and learned theories, consists of function free
Horn clauses to be interpreted according to the Object
Identity assumption. This system has been further
developed by providing it with additional numeric and
multistrategy capabilities, in order to improve
effectiveness and efficiency of the learning task.
INTHELEX was applied to the real-world domain of
document processing, giving encouraging results.

KEY WORDS: Machine Learning, Inductive Logic
Programming, Theory Revision, Multistrategy Learning.

1. INTRODUCTION

INTHELEX (INcremental THEory Learner from
EXamples) is a learning system for the induction of
hierarchical theories from positive and negative
examples. It is fully and inherently incremental: this
means that, in addition to the possibility of taking as input
a previously generated version of the theory, learning can
also start from an empty theory and from the first
available example; moreover, at any moment the theory is
guaranteed to be correct with respect to all of the
examples encountered thus far. Incremental learning is
necessary when either incomplete information is available
at the time of initial theory generation, or the nature of the
concepts evolves dynamically1. INTHELEX can learn
simultaneously various concepts, possibly related to each
other and is based on a closed loop architecture - i.e. the
learned theory correctness is checked on any new
example and, in case of failure, a revision process is
activated on it, in order to restore completeness and
consistency.

1 The latter situation is the most difficult to handle since time
evolution needs to be considered.

INTHELEX learns theories expressed as sets of DatalogOI
clauses, i.e. function free clauses to be interpreted
according to the Object Identity (OI for short) assumption
[2] (“within a clause, terms denoted with different
symbols must be distinct”). It adopts a full memory
storage strategy - i.e., it retains all the available examples,
thus the learned theories are guaranteed to be valid on the
whole set of known examples - and it incorporates two
operators, one for generalizing hypotheses that reject
positive examples, and the other for specializing
hypotheses that explain negative examples. Both these
operators, when applied, change the answer set of the
theory, i.e. the set of examples it accounts for. Therefore,
it is a system for theory revision rather than for theory
restructuring [7].

Born to handle symbolic representations only,
INTHELEX was extended to treat numeric attributes as
well. Such an extension was needed because in most
domains numeric information is of vital importance.
Thus, the representational language was modified in order
to allow the presence of both symbolic and numeric
constants and relations/properties. In addition, the learned
theory can now contain numeric constraints that represent
the range of values a numeric variable can assume. Since
different numeric attributes may have the same value, the
OI-assumption was applied only to symbolic objects, and
not to numeric ones.

This purely inductive system has been further developed
by providing it with additional multistrategy capabilities
[5], according to the Inferential Theory of Learning
framework [6], in order to improve effectiveness and
efficiency of the learning task. In particular, abduction is
used to complete the observations, whenever possible, in
such a way that the examples they represent are explained
(if positive) or rejected (if negative). This prevents the
refinement operators from being applied, as long as
possible, leaving the theory unchanged. Abstraction can
be cast as the process of focusing on what is relevant in an
observation. Indeed, ignoring the details about the objects
belonging to a class may facilitate the generation of rules
for that class. Deduction exploits the provided
Background Knowledge (i.e. some partial concept
definitions known to be correct, and hence not
modifiable) to recognize known objects in an example
description.

2. ARCHITECTURE

In order to perform its task, the system exploits a previous
theory (optional), a graph describing the dependence
relationships among the concepts to be learned (see
Figure 1 for a graphical example concerning the vehicle
domain), and a historical memory of all the past (positive
and negative) examples that led to the current theory. It is
important to note that a positive example for a concept is
not considered as a negative example for all the other
concepts (unless it is explicitly stated). The logical
architecture of INTHELEX is shown in Figure 2.

A set of examples of the concepts to be learned is
provided by the Expert, possibly selected from the
Environment. Whenever a new example is taken into
account, it is preliminary processed by the Abstraction
module in order to describe it in a higher-level language,
by eliminating superfluous details according to the given
Abstraction theory. Specifically, the implemented
abstraction operators allow to [3]:

• eliminate superfluous details;
• group specific component patterns into

compound objects;
• reduce the number of object attributes;
• ignore the number of instances of a given object;
• obtain a coarser grain-size for attribute values.

Then, the example is stored in the historical memory and,
if necessary, undergoes a saturation phase. If any of its
sub-concepts in the dependency graph can be recognized
in its description according to the definitions learned by
the system up to that moment and the Background
Knowledge, literals concerning those concepts are added
(properly instantiated) to the example description.

The whole set of examples can be subdivided into three
subsets, namely training, tuning and test examples,
according to the way in which examples are exploited
during the learning process. Specifically, training
examples (if any), previously classified by the Expert, are
exploited by the Rule Generator to build a theory that is
able to explain them. The initial theory can also be
provided by the Expert.

Subsequently, such a theory, plus the Background
Knowledge, are checked by the Rule Interpreter against
new available examples. The Rule Interpreter takes the set
of inductive hypotheses and a tuning/test example as
input, and produces a decision. It may exploit a special
abductive proof procedure to manage situations in which

not only the set of all observations is partially known, but
each observation could be incomplete too. In particular,
an algorithm by [1], modified as in [4], was adopted in
order to hypothesize unknown facts to be added to an
observation, provided they are consistent with given
integrity constraints. The decision is compared to the
correct one and, in case of incorrectness, the cause of the
wrong decision can be located.

Test examples are exploited only to check the predictive
capabilities of the theory on new observations.
Conversely, tuning examples are exploited incrementally
by the Rule Refiner to modify incorrect hypotheses
according to a data-driven strategy. The Rule Refiner
consists of two distinct modules, a Rule Specializer and a
Rule Generalizer. In particular, when a positive example
is not covered, the Rule Generalizer produces a revised
theory obtained in one of the following ways (listed by
decreasing priority) such that completeness is restored:

• extending the range of numeric values in a clause
and/or replacing a clause in the theory with one
of its Least General Generalizations under
Object Identity against the problematic example;

• adding a new clause to the theory, obtained by
properly turning into variables the constants in
the problematic example;

• adding the problematic example as a positive
exception.

When, on the other hand, a negative example is covered,
the Rule Specializer outputs a revised theory that restores
consistency by performing one of the following actions
(by decreasing priority):

• restricting the range of numeric values in a
clause;

• adding positive literals that are able to
characterize all the past positive examples of the
concept (and exclude the problematic one) to the
clauses that concur to the example coverage
(starting from the lowest level possible);

• adding a negative literal that is able to
discriminate the problematic example from all
the past positive ones to the top-level clause in
the theory by which the problematic example is
covered;

Generalizer

Specializer

Expert/Environment
 Examples

Rule Interpreter

Abduction
Theory

Abstraction
Theory

Theory

Background

Theory

decision

T uning
 Example

T raining Examples

T uning/T est
 Examples

Abstraction

Rule Generator
 Rule Refiner

Figure 2. INTHELEX architecture.

 car bicycle

engine wheel rim

piston
Figure 1. Example of dependence graph.

• adding the problematic example as a negative
exception.

It is worth noting that INTHELEX never rejects
examples, but always refines the theory. Moreover, it
does not need to know a priori what is the whole set of
concepts to be learned, but it learns a new concept as soon
as examples about it are available.

3. RUNNING THE SYSTEM

INTHELEX has been developed in SICSTUS Prolog on a
Sun UltraSparc2 architecture running the OPEN WINDOWS
environment and on a iX86 architecture running the MS
WINDOWS 98 environment. The TCL/TK 8.2 library is
exploited to provide the visual interface.

The system accepts examples of the concepts to be
learned, described as ground Horn clauses whose head
identifies the object and its correct classification, while
the body describes the observation in terms of the
predicates belonging to the description language (negative
literals are not allowed):

car(c1) :- engine(c1,m1), wheel(c1,w1),

wheel(c1,w2), wheel(c1,w3), wheel(c1,w4).

According to intuition, a negative example differs from a
positive one in that the concept in its head is negated:

not(car(c2)) :- engine(c2,m2), wheel(c2,w1),

wheel(c2,w2), has_pedals(c2).

Analogously, each learned hypothesis consists of a Horn
clause without symbolic constants, whose head identifies
the concept it defines, while the body reports the
conditions that an observation should meet in order to be
classified in that way. In this case, negative literals
(coming from the specialization operator) can be present:

car(X) :- engine(X,Y), wheel(X,Z),

not(has_pedals(X)).

Note that, according to the Object Identity assumption,
different variables are automatically considered by the
system as referring to different objects.

A number of parameters is provided in order to allow or
exclude multistrategy and/or limit the search space of the
refinement operators. The user can also set the system to
autonomously modify, within a controlled range, some of
these parameters in order to best fit the specific situations
that may take place during learning.

INTHELEX can be run in one of three modes, according
to the way the interaction with the user takes place. In
particular, the available modes are:

• Interactive: The user is asked to directly enter
through a textual menu-driven interface
(depicted in Figure 3) the parameters according
to which the system has to perform its task.

• Automatic: The parameters are read from a
proper file, and hence the user is not asked for
them (this is useful when running many
experiments with the same parameters, or if an
external application exploits INTHELEX as its
learning component).

• Visual: It is possible enter the parameters directly
through the interface or to load them from a file.
Figure 4 shows the visual interfaces for the
Tuning and the Test tasks.

The system reports about the actions taken during its
execution, and ends with a statistical summary (see Figure
5); such outputs can be displayed on the screen or
redirected to any other user-specified device.

4. EXPERIMENTAL RESULTS

INTHELEX was applied to various different tasks. In
particular, it can be interesting to report the results
obtained on the real-world problem of paper document
classification and interpretation. The dataset consisted of
112 scientific papers, 30 of class Springer-Verlag Lecture
Notes (SVLN), 34 of IEEE Transactions (IEEET) and 28
of Proceedings of the International Conference on
Machine Learning (ICML); other 20 belonged to class
Reject. After a preliminarily digitalization and processing
in order to describe their layout structure in our
representation language, the dataset was randomly split 33
times into learning and test sets (70% and 30% of the
whole, respectively). Abstraction was used to shift from
punctual values for numeric attributes to symbolic
constants representing intervals.

A first experiment aimed at learning rules for classifying
documents, and resulted in a 90.73% average predictive
accuracy. Another one tried to learn definitions for the
logical components of each class (e.g. title, abstract, etc.).
In this case the average results were 92.82% for SVLN,
96.7% for ICML and 96.72% for IEEET.

 ___ _ _ _____ _ _ ___ _ _____ __
 |_ _| \| |_ _| || | __| | | __\ \/ /
 | || .` | | | | __ | _|| |__| _| > <
 |___|_|_| |_| |_||_|___|____|___/_/_\

 INcremental THEory Learner from EXamples
 LACAM - Department of Computer Science - BARI
 Ver. 2.0 (C) 2001

 1 - Tuning
 2 - Test
 3 - Classification
 4 - Cleaning
 5 - Sorting
 6 - Create pars file
 0 - Quit

 Choice:

Figure 3. Interactive menu of INTHELEX.

5. CONCLUSION

The incremental learning system INTHELEX has been
presented, that embeds operators for theory revision and
is able to handle both symbolic and numeric information.
Its multistrategy capabilities rely on abstraction,
abduction and deduction to improve efficiency and
effectiveness of the learning process. The use of
INTHELEX is made easier thanks to an intuitive
representation language and a visual interface through
which parameters can be set and modified.

The goodness of the implemented approach has been
tested on, and confirmed by, system performance on the
real-world domain of paper document processing.

REFERENCES

Proceedings Papers:

[1] A.C. Kakas & P. Bancarella, On the relation of truth

maintenance and abduction, Proc. 1st Pacific Rim
International Conference on Artificial Intelligence,
Nagoya, Japan, 1990.

[2] G. Semeraro, F. Esposito & D. Malerba, Ideal
refinement of datalog programs, Logic Program
Synthesis and Transformation, Lecture Notes in Computer
Science 1048, 1996, 120-136.

[3] J.-D. Zucker, A semantic abstraction for concept
representation and learning, Proc. 4th International
Workshop on Multistrategy Learning, Desenzano del
Garda, Italy,1998.

Journal Papers:

[4] F. Esposito, G. Semeraro, N. Fanizzi & S. Ferilli,
Multistrategy theory revision: induction and abduction in
INTHELEX, Machine Learning Journal, 38(1/2), 2000,
133-156.

Books:

[5] S. Ferilli, A framework for incremetal synthesis of
logic theories: an application to document processing
(PhD Thesis, Dipartimento di Informatica - Università
degli Studi di Bari, 2000).

[6] R.S. Michalski, Inferential theory of learning,
developing foundations for multistrategy learning (In R.
S. Michalski & G. Tecuci, editors, Machine Learning. A
Multistrategy Approach, volume IV, pages 3-61. Morgan
Kaufmann, San Mateo, CA, USA, 1994).

[7] S. Wrobel. First order theory refinement (de Raedt,
editor. Advances in Inductive Logic Programming. IOS
Press, Amsterdam, NL, pages 14-33, 1996).

Figure 4. INTHELEX Tuning and Test Interfaces.

 RESEARCH :p
 MIN SIZE RATE :0.5
 MAX SIZE RATE :0.7
 MAXGEN :50
 MAX_DISC_CLAUSES :500

 RESEARCH_SPEC :p
 MAXSPEC :99

Time elapsed for tuning: Runtime : 36.200 sec.

Positive example : 20 Negative example : 59

Generalization:
 Added new clause : 4
 Generated lgg of a clause : 4
 Added positive exception : 0

Specialization:
 Added positive literal : 1
 Added negative literal : 0
 Added negative exception : 0

Figure 5. Output statistics about a Tuning task.

