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ABSTRACT 
 
INTHELEX is a learning system for the induction of 
hierarchical theories from examples. It is fully and 
inherently incremental, and can learn simultaneously 
various concepts, possibly related to each other. The 
representation language, which is common to both 
examples and learned theories, consists of function free 
Horn clauses to be interpreted according to the Object 
Identity assumption. This system has been further 
developed by providing it with additional numeric and 
multistrategy capabilities, in order to improve 
effectiveness and efficiency of the learning task. 
INTHELEX was applied to the real-world domain of 
document processing, giving encouraging results. 
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1. INTRODUCTION 
 
INTHELEX (INcremental THEory Learner from 
EXamples) is a learning system for the induction of 
hierarchical theories from positive and negative 
examples. It is fully and inherently incremental: this 
means that, in addition to the possibility of taking as input 
a previously generated version of the theory, learning can 
also start from an empty theory and from the first 
available example; moreover, at any moment the theory is 
guaranteed to be correct with respect to all of the 
examples encountered thus far. Incremental learning is 
necessary when either incomplete information is available 
at the time of initial theory generation, or the nature of the 
concepts evolves dynamically1. INTHELEX can learn 
simultaneously various concepts, possibly related to each 
other and is based on a closed loop architecture - i.e. the 
learned theory correctness is checked on any new 
example and, in case of failure, a revision process is 
activated on it, in order to restore completeness and 
consistency. 
 

                                                 
1 The latter situation is the most difficult to handle since time 
evolution needs to be considered. 

INTHELEX learns theories expressed as sets of DatalogOI 
clauses, i.e. function free clauses to be interpreted 
according to the Object Identity (OI for short) assumption 
[2] (“within a clause, terms denoted with different 
symbols must be distinct”). It adopts a full memory 
storage strategy - i.e., it retains all the available examples, 
thus the learned theories are guaranteed to be valid on the 
whole set of known examples - and it incorporates two 
operators, one for generalizing hypotheses that reject 
positive examples, and the other for specializing 
hypotheses that explain negative examples. Both these 
operators, when applied, change the answer set of the 
theory, i.e. the set of examples it accounts for. Therefore, 
it is a system for theory revision rather than for theory 
restructuring [7]. 
 
Born to handle symbolic representations only, 
INTHELEX was extended to treat numeric attributes as 
well. Such an extension was needed because in most 
domains numeric information is of vital importance. 
Thus, the representational language was modified in order 
to allow the presence of both symbolic and numeric 
constants and relations/properties. In addition, the learned 
theory can now contain numeric constraints that represent 
the range of values a numeric variable can assume. Since 
different numeric attributes may have the same value, the 
OI-assumption was applied only to symbolic objects, and 
not to numeric ones. 
 
This purely inductive system has been further developed 
by providing it with additional multistrategy capabilities 
[5], according to the Inferential Theory of Learning 
framework [6], in order to improve effectiveness and 
efficiency of the learning task. In particular, abduction is 
used to complete the observations, whenever possible, in 
such a way that the examples they represent are explained 
(if positive) or rejected (if negative). This prevents the 
refinement operators from being applied, as long as 
possible, leaving the theory unchanged. Abstraction can 
be cast as the process of focusing on what is relevant in an 
observation. Indeed, ignoring the details about the objects 
belonging to a class may facilitate the generation of rules 
for that class. Deduction exploits the provided 
Background Knowledge (i.e. some partial concept 
definitions known to be correct, and hence not 
modifiable) to recognize known objects in an example 
description. 



2. ARCHITECTURE 
 
In order to perform its task, the system exploits a previous 
theory (optional), a graph describing the dependence 
relationships among the concepts to be learned (see 
Figure 1 for a graphical example concerning the vehicle 
domain), and a historical memory of all the past (positive 
and negative) examples that led to the current theory. It is 
important to note that a positive example for a concept is 
not considered as a negative example for all the other 
concepts (unless it is explicitly stated). The logical 
architecture of INTHELEX is shown in Figure 2. 
 
A set of examples of the concepts to be learned is 
provided by the Expert, possibly selected from the 
Environment. Whenever a new example is taken into 
account, it is preliminary processed by the Abstraction 
module in order to describe it in a higher-level language, 
by eliminating superfluous details according to the given 
Abstraction theory. Specifically, the implemented 
abstraction operators allow to [3]: 

• eliminate superfluous details; 
• group specific component patterns into 

compound objects; 
• reduce the number of object attributes; 
• ignore the number of instances of a given object; 
• obtain a coarser grain-size for attribute values. 

Then, the example is stored in the historical memory and, 
if necessary, undergoes a saturation phase. If any of its 
sub-concepts in the dependency graph can be recognized 
in its description according to the definitions learned by 
the system up to that moment and the Background 
Knowledge, literals concerning those concepts are added 
(properly instantiated) to the example description. 
 
The whole set of examples can be subdivided into three 
subsets, namely training, tuning and test examples, 
according to the way in which examples are exploited 
during the learning process. Specifically, training 
examples (if any), previously classified by the Expert, are 
exploited by the Rule Generator to build a theory that is 
able to explain them. The initial theory can also be 
provided by the Expert. 
 
Subsequently, such a theory, plus the Background 
Knowledge, are checked by the Rule Interpreter against 
new available examples. The Rule Interpreter takes the set 
of inductive hypotheses and a tuning/test example as 
input, and produces a decision. It may exploit a special 
abductive proof procedure to manage situations in which 

not only the set of all observations is partially known, but 
each observation could be incomplete too. In particular, 
an algorithm by [1], modified as in [4], was adopted in 
order to hypothesize unknown facts to be added to an 
observation, provided they are consistent with given 
integrity constraints. The decision is compared to the 
correct one and, in case of incorrectness, the cause of the 
wrong decision can be located. 
 
Test examples are exploited only to check the predictive 
capabilities of the theory on new observations. 
Conversely, tuning examples are exploited incrementally 
by the Rule Refiner to modify incorrect hypotheses 
according to a data-driven strategy. The Rule Refiner 
consists of two distinct modules, a Rule Specializer and a 
Rule Generalizer. In particular, when a positive example 
is not covered, the Rule Generalizer produces a revised 
theory obtained in one of the following ways (listed by 
decreasing priority) such that completeness is restored: 

• extending the range of numeric values in a clause 
and/or replacing a clause in the theory with one 
of its Least General Generalizations under 
Object Identity against the problematic example; 

• adding a new clause to the theory, obtained by 
properly turning into variables the constants in 
the problematic example; 

• adding the problematic example as a positive 
exception. 

When, on the other hand, a negative example is covered, 
the Rule Specializer outputs a revised theory that restores 
consistency by performing one of the following actions 
(by decreasing priority): 

• restricting the range of numeric values in a 
clause; 

• adding positive literals that are able to 
characterize all the past positive examples of the 
concept (and exclude the problematic one) to the 
clauses that concur to the example coverage 
(starting from the lowest level possible); 

• adding a negative literal that is able to 
discriminate the problematic example from all 
the past positive ones to the top-level clause in 
the theory by which the problematic example is 
covered; 
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Figure 2. INTHELEX architecture. 
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Figure 1. Example of dependence graph. 



• adding the problematic example as a negative 
exception. 

It is worth noting that INTHELEX never rejects 
examples, but always refines the theory. Moreover, it 
does not need to know a priori what is the whole set of 
concepts to be learned, but it learns a new concept as soon 
as examples about it are available. 
 
 
3. RUNNING THE SYSTEM 
 
INTHELEX has been developed in  SICSTUS Prolog on a 
Sun UltraSparc2 architecture running the OPEN WINDOWS 
environment and on a iX86 architecture running the MS 
WINDOWS 98 environment. The TCL/TK 8.2 library is 
exploited to provide the visual interface. 
 
The system accepts examples of the concepts to be 
learned, described as ground Horn clauses whose head 
identifies the object and its correct classification, while 
the body describes the observation in terms of the 
predicates belonging to the description language (negative 
literals are not allowed): 
 
car(c1) :- engine(c1,m1), wheel(c1,w1), 

wheel(c1,w2), wheel(c1,w3), wheel(c1,w4). 

 
According to intuition, a negative example differs from a 
positive one in that the concept in its head is negated: 
 
not(car(c2)) :- engine(c2,m2), wheel(c2,w1), 

wheel(c2,w2), has_pedals(c2). 

 
Analogously, each learned hypothesis consists of a Horn 
clause without symbolic constants, whose head identifies 
the concept it defines, while the body reports the 
conditions that an observation should meet in order to be 
classified in that way. In this case, negative literals 
(coming from the specialization operator) can be present: 
 
car(X) :- engine(X,Y), wheel(X,Z), 

not(has_pedals(X)). 

 

Note that, according to the Object Identity assumption, 
different variables are automatically considered by the 
system as referring to different objects. 
 
A number of parameters is provided in order to allow or 
exclude multistrategy and/or limit the search space of the 
refinement operators. The user can also set the system to 
autonomously modify, within a controlled range, some of 
these parameters in order to best fit the specific situations 
that may take place during learning. 
 
INTHELEX can be run in one of three modes, according 
to the way the interaction with the user takes place. In 
particular, the available modes are: 

• Interactive: The user is asked to directly enter 
through a textual menu-driven interface 
(depicted in Figure 3) the parameters according 
to which the system has to perform its task. 

• Automatic: The parameters are read from a 
proper file, and hence the user is not asked for 
them (this is useful when running many 
experiments with the same parameters, or if an 
external application exploits INTHELEX as its 
learning component). 

• Visual: It is possible enter the parameters directly 
through the interface or to load them from a file. 
Figure 4 shows the visual interfaces for the 
Tuning and the Test tasks. 

The system reports about the actions taken during its 
execution, and ends with a statistical summary (see Figure 
5); such outputs can be displayed on the screen or 
redirected to any other user-specified device. 
 
 
4. EXPERIMENTAL RESULTS 
 
INTHELEX was applied to various different tasks. In 
particular, it can be interesting to report the results 
obtained on the real-world problem of paper document 
classification and interpretation. The dataset consisted of 
112 scientific papers, 30 of class Springer-Verlag Lecture 
Notes (SVLN), 34 of IEEE Transactions (IEEET) and 28 
of Proceedings of the International Conference on 
Machine Learning (ICML); other 20 belonged to class 
Reject. After a preliminarily digitalization and processing 
in order to describe their layout structure in our 
representation language, the dataset was randomly split 33 
times into learning and test sets (70% and 30% of the 
whole, respectively). Abstraction was used to shift from 
punctual values for numeric attributes to symbolic 
constants representing intervals. 
 
A first experiment aimed at learning rules for classifying 
documents, and resulted in a 90.73% average predictive 
accuracy. Another one tried to learn definitions for the 
logical components of each class (e.g. title, abstract, etc.).  
In this case the average results were 92.82% for SVLN, 
96.7% for ICML and 96.72% for IEEET. 
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                          5 - Sorting 
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                          0 - Quit 
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Figure 3. Interactive menu of INTHELEX. 



5. CONCLUSION 
 
The incremental learning system INTHELEX has been 
presented, that embeds operators for theory revision and 
is able to handle both symbolic and numeric information. 
Its multistrategy capabilities rely on abstraction, 
abduction and deduction to improve efficiency and 
effectiveness of the learning process. The use of 
INTHELEX is made easier thanks to an intuitive 
representation language and a visual interface through 
which parameters can be set and modified. 
 
The goodness of the implemented approach has been 
tested on, and confirmed by, system performance on the 
real-world domain of paper document processing. 
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Figure 4. INTHELEX Tuning and Test Interfaces. 

 
 
 RESEARCH         :p 
 MIN SIZE RATE    :0.5 
 MAX SIZE RATE    :0.7 
 MAXGEN           :50 
 MAX_DISC_CLAUSES :500 
 
 RESEARCH_SPEC    :p 
 MAXSPEC          :99 
 
Time elapsed for tuning: Runtime : 36.200 sec. 
 
Positive example : 20 Negative example : 59 
 
Generalization: 
   Added new clause          : 4 
   Generated lgg of a clause : 4 
   Added positive exception  : 0 
 
Specialization: 
   Added positive literal    : 1 
   Added negative literal    : 0 
   Added negative exception  : 0 
 

Figure 5. Output statistics about a Tuning task. 


